Cargando…
CD8(+) T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (EC...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131904/ https://www.ncbi.nlm.nih.gov/pubmed/27907215 http://dx.doi.org/10.1371/journal.ppat.1006022 |
_version_ | 1782470962389712896 |
---|---|
author | Swanson, Phillip A. Hart, Geoffrey T. Russo, Matthew V. Nayak, Debasis Yazew, Takele Peña, Mirna Khan, Shahid M. Janse, Chris J. Pierce, Susan K. McGavern, Dorian B. |
author_facet | Swanson, Phillip A. Hart, Geoffrey T. Russo, Matthew V. Nayak, Debasis Yazew, Takele Peña, Mirna Khan, Shahid M. Janse, Chris J. Pierce, Susan K. McGavern, Dorian B. |
author_sort | Swanson, Phillip A. |
collection | PubMed |
description | Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8(+) T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8(+) T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8(+) T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8(+) T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8(+) T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature. |
format | Online Article Text |
id | pubmed-5131904 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-51319042016-12-21 CD8(+) T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature Swanson, Phillip A. Hart, Geoffrey T. Russo, Matthew V. Nayak, Debasis Yazew, Takele Peña, Mirna Khan, Shahid M. Janse, Chris J. Pierce, Susan K. McGavern, Dorian B. PLoS Pathog Research Article Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8(+) T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8(+) T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8(+) T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8(+) T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8(+) T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature. Public Library of Science 2016-12-01 /pmc/articles/PMC5131904/ /pubmed/27907215 http://dx.doi.org/10.1371/journal.ppat.1006022 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Swanson, Phillip A. Hart, Geoffrey T. Russo, Matthew V. Nayak, Debasis Yazew, Takele Peña, Mirna Khan, Shahid M. Janse, Chris J. Pierce, Susan K. McGavern, Dorian B. CD8(+) T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature |
title | CD8(+) T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature |
title_full | CD8(+) T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature |
title_fullStr | CD8(+) T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature |
title_full_unstemmed | CD8(+) T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature |
title_short | CD8(+) T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature |
title_sort | cd8(+) t cells induce fatal brainstem pathology during cerebral malaria via luminal antigen-specific engagement of brain vasculature |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131904/ https://www.ncbi.nlm.nih.gov/pubmed/27907215 http://dx.doi.org/10.1371/journal.ppat.1006022 |
work_keys_str_mv | AT swansonphillipa cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT hartgeoffreyt cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT russomatthewv cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT nayakdebasis cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT yazewtakele cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT penamirna cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT khanshahidm cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT jansechrisj cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT piercesusank cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT mcgaverndorianb cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature |