Cargando…
Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton
Two immortalized backcross populations (DHBCF(1)s and JMBCF(1)s) were developed using a recombinant inbred line (RIL) population crossed with the two parents DH962 and Jimian5 (as the males), respectively. The fiber quality and yield component traits of the two backcross populations were phenotyped...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131980/ https://www.ncbi.nlm.nih.gov/pubmed/27907098 http://dx.doi.org/10.1371/journal.pone.0166970 |
_version_ | 1782470977535344640 |
---|---|
author | Wang, Hantao Huang, Cong Zhao, Wenxia Dai, Baosheng Shen, Chao Zhang, Beibei Li, Dingguo Lin, Zhongxu |
author_facet | Wang, Hantao Huang, Cong Zhao, Wenxia Dai, Baosheng Shen, Chao Zhang, Beibei Li, Dingguo Lin, Zhongxu |
author_sort | Wang, Hantao |
collection | PubMed |
description | Two immortalized backcross populations (DHBCF(1)s and JMBCF(1)s) were developed using a recombinant inbred line (RIL) population crossed with the two parents DH962 and Jimian5 (as the males), respectively. The fiber quality and yield component traits of the two backcross populations were phenotyped at four environments (two locations, two years). One hundred seventy-eight quantitative trait loci (QTL) were detected including 76 for fiber qualities and 102 for yield components, explaining 4.08–17.79% of the phenotypic variation (PV). Among the 178 QTL, 22 stable QTL were detected in more than one environment or population. A stable QTL, qFL-c10-1, was detected in the previous F(2) population, a RIL population in 3 environments and the current two BCF(1) populations in this study, explaining 5.79–37.09% of the PV. Additionally, 117 and 110 main-effect QTL (M-QTL) and 47 and 191 digenic epistatic QTL (E-QTL) were detected in the DHBCF(1)s and JMBCF(1)s populations, respectively. The effect of digenic epistasis played a more important role on lint percentage, fiber length and fiber strength. These results obtained in the present study provided more resources to obtain stable QTL, confirming the authenticity and reliability of the QTL for molecular marker-assisted selection breeding and QTL cloning. |
format | Online Article Text |
id | pubmed-5131980 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-51319802016-12-21 Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton Wang, Hantao Huang, Cong Zhao, Wenxia Dai, Baosheng Shen, Chao Zhang, Beibei Li, Dingguo Lin, Zhongxu PLoS One Research Article Two immortalized backcross populations (DHBCF(1)s and JMBCF(1)s) were developed using a recombinant inbred line (RIL) population crossed with the two parents DH962 and Jimian5 (as the males), respectively. The fiber quality and yield component traits of the two backcross populations were phenotyped at four environments (two locations, two years). One hundred seventy-eight quantitative trait loci (QTL) were detected including 76 for fiber qualities and 102 for yield components, explaining 4.08–17.79% of the phenotypic variation (PV). Among the 178 QTL, 22 stable QTL were detected in more than one environment or population. A stable QTL, qFL-c10-1, was detected in the previous F(2) population, a RIL population in 3 environments and the current two BCF(1) populations in this study, explaining 5.79–37.09% of the PV. Additionally, 117 and 110 main-effect QTL (M-QTL) and 47 and 191 digenic epistatic QTL (E-QTL) were detected in the DHBCF(1)s and JMBCF(1)s populations, respectively. The effect of digenic epistasis played a more important role on lint percentage, fiber length and fiber strength. These results obtained in the present study provided more resources to obtain stable QTL, confirming the authenticity and reliability of the QTL for molecular marker-assisted selection breeding and QTL cloning. Public Library of Science 2016-12-01 /pmc/articles/PMC5131980/ /pubmed/27907098 http://dx.doi.org/10.1371/journal.pone.0166970 Text en © 2016 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wang, Hantao Huang, Cong Zhao, Wenxia Dai, Baosheng Shen, Chao Zhang, Beibei Li, Dingguo Lin, Zhongxu Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton |
title | Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton |
title_full | Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton |
title_fullStr | Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton |
title_full_unstemmed | Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton |
title_short | Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton |
title_sort | identification of qtl for fiber quality and yield traits using two immortalized backcross populations in upland cotton |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131980/ https://www.ncbi.nlm.nih.gov/pubmed/27907098 http://dx.doi.org/10.1371/journal.pone.0166970 |
work_keys_str_mv | AT wanghantao identificationofqtlforfiberqualityandyieldtraitsusingtwoimmortalizedbackcrosspopulationsinuplandcotton AT huangcong identificationofqtlforfiberqualityandyieldtraitsusingtwoimmortalizedbackcrosspopulationsinuplandcotton AT zhaowenxia identificationofqtlforfiberqualityandyieldtraitsusingtwoimmortalizedbackcrosspopulationsinuplandcotton AT daibaosheng identificationofqtlforfiberqualityandyieldtraitsusingtwoimmortalizedbackcrosspopulationsinuplandcotton AT shenchao identificationofqtlforfiberqualityandyieldtraitsusingtwoimmortalizedbackcrosspopulationsinuplandcotton AT zhangbeibei identificationofqtlforfiberqualityandyieldtraitsusingtwoimmortalizedbackcrosspopulationsinuplandcotton AT lidingguo identificationofqtlforfiberqualityandyieldtraitsusingtwoimmortalizedbackcrosspopulationsinuplandcotton AT linzhongxu identificationofqtlforfiberqualityandyieldtraitsusingtwoimmortalizedbackcrosspopulationsinuplandcotton |