Cargando…
Competitive Adsorption of Substrate and Solvent in Sn‐Beta Zeolite During Sugar Isomerization
The isomerization of 1,3‐dihydroxyactone and d‐glucose over Sn‐Beta zeolite was investigated by in situ (13)C NMR spectroscopy. The conversion rate at room temperature is higher when the zeolite is dehydrated before exposure to the aqueous sugar solution. Mass transfer limitations in the zeolite mic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132075/ https://www.ncbi.nlm.nih.gov/pubmed/27791334 http://dx.doi.org/10.1002/cssc.201600800 |
_version_ | 1782470998346432512 |
---|---|
author | van der Graaff, William N. P. Tempelman, Christiaan H. L. Li, Guanna Mezari, Brahim Kosinov, Nikolay Pidko, Evgeny A. Hensen, Emiel J. M. |
author_facet | van der Graaff, William N. P. Tempelman, Christiaan H. L. Li, Guanna Mezari, Brahim Kosinov, Nikolay Pidko, Evgeny A. Hensen, Emiel J. M. |
author_sort | van der Graaff, William N. P. |
collection | PubMed |
description | The isomerization of 1,3‐dihydroxyactone and d‐glucose over Sn‐Beta zeolite was investigated by in situ (13)C NMR spectroscopy. The conversion rate at room temperature is higher when the zeolite is dehydrated before exposure to the aqueous sugar solution. Mass transfer limitations in the zeolite micropores were excluded by comparing Sn‐Beta samples with different crystal sizes. Periodic density functional theory (DFT) calculations show that sugar and water molecules compete for adsorption on the active framework Sn centers. Careful solvent selection may thus increase the rate of sugar isomerization. Consistent with this prediction, batch catalytic experiments show that the use of a co‐solvent, such as tetrahydrofuran, that strongly interacts with the Sn centers suppresses glucose isomerization. On the other hand, the use of ethanol as cosolvent results in significantly higher isomerization activity in comparison with pure water because of decreased competition with glucose adsorption on zeolitic Sn sites. |
format | Online Article Text |
id | pubmed-5132075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-51320752016-12-02 Competitive Adsorption of Substrate and Solvent in Sn‐Beta Zeolite During Sugar Isomerization van der Graaff, William N. P. Tempelman, Christiaan H. L. Li, Guanna Mezari, Brahim Kosinov, Nikolay Pidko, Evgeny A. Hensen, Emiel J. M. ChemSusChem Communications The isomerization of 1,3‐dihydroxyactone and d‐glucose over Sn‐Beta zeolite was investigated by in situ (13)C NMR spectroscopy. The conversion rate at room temperature is higher when the zeolite is dehydrated before exposure to the aqueous sugar solution. Mass transfer limitations in the zeolite micropores were excluded by comparing Sn‐Beta samples with different crystal sizes. Periodic density functional theory (DFT) calculations show that sugar and water molecules compete for adsorption on the active framework Sn centers. Careful solvent selection may thus increase the rate of sugar isomerization. Consistent with this prediction, batch catalytic experiments show that the use of a co‐solvent, such as tetrahydrofuran, that strongly interacts with the Sn centers suppresses glucose isomerization. On the other hand, the use of ethanol as cosolvent results in significantly higher isomerization activity in comparison with pure water because of decreased competition with glucose adsorption on zeolitic Sn sites. John Wiley and Sons Inc. 2016-10-28 2016-11-23 /pmc/articles/PMC5132075/ /pubmed/27791334 http://dx.doi.org/10.1002/cssc.201600800 Text en © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications van der Graaff, William N. P. Tempelman, Christiaan H. L. Li, Guanna Mezari, Brahim Kosinov, Nikolay Pidko, Evgeny A. Hensen, Emiel J. M. Competitive Adsorption of Substrate and Solvent in Sn‐Beta Zeolite During Sugar Isomerization |
title | Competitive Adsorption of Substrate and Solvent in Sn‐Beta Zeolite During Sugar Isomerization |
title_full | Competitive Adsorption of Substrate and Solvent in Sn‐Beta Zeolite During Sugar Isomerization |
title_fullStr | Competitive Adsorption of Substrate and Solvent in Sn‐Beta Zeolite During Sugar Isomerization |
title_full_unstemmed | Competitive Adsorption of Substrate and Solvent in Sn‐Beta Zeolite During Sugar Isomerization |
title_short | Competitive Adsorption of Substrate and Solvent in Sn‐Beta Zeolite During Sugar Isomerization |
title_sort | competitive adsorption of substrate and solvent in sn‐beta zeolite during sugar isomerization |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132075/ https://www.ncbi.nlm.nih.gov/pubmed/27791334 http://dx.doi.org/10.1002/cssc.201600800 |
work_keys_str_mv | AT vandergraaffwilliamnp competitiveadsorptionofsubstrateandsolventinsnbetazeoliteduringsugarisomerization AT tempelmanchristiaanhl competitiveadsorptionofsubstrateandsolventinsnbetazeoliteduringsugarisomerization AT liguanna competitiveadsorptionofsubstrateandsolventinsnbetazeoliteduringsugarisomerization AT mezaribrahim competitiveadsorptionofsubstrateandsolventinsnbetazeoliteduringsugarisomerization AT kosinovnikolay competitiveadsorptionofsubstrateandsolventinsnbetazeoliteduringsugarisomerization AT pidkoevgenya competitiveadsorptionofsubstrateandsolventinsnbetazeoliteduringsugarisomerization AT hensenemieljm competitiveadsorptionofsubstrateandsolventinsnbetazeoliteduringsugarisomerization |