Cargando…
Consistent quantitative gene product expression: #1. Automated identification of regenerating bone marrow cell populations using support vector machines
Identification and quantification of maturing hematopoietic cell populations in flow cytometry data sets is a complex and sometimes irreproducible step in data analysis. Supervised machine learning algorithms present promise to automatically classify cells into populations, reducing subjective bias...
Autores principales: | Voigt, Andrew P., Eidenschink Brodersen, Lisa, Pardo, Laura, Meshinchi, Soheil, Loken, Michael R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132084/ https://www.ncbi.nlm.nih.gov/pubmed/27416291 http://dx.doi.org/10.1002/cyto.a.22905 |
Ejemplares similares
-
Consistent quantitative gene product expression: #2. Antigen intensities on bone marrow cells are invariant between individuals
por: Loken, Michael R., et al.
Publicado: (2016) -
Consistent quantitative gene product expression: #3. Invariance with age
por: Loken, Michael, R., et al.
Publicado: (2016) -
Phenotype in combination with genotype improves outcome prediction in acute myeloid leukemia: a report from Children’s Oncology Group protocol AAML0531
por: Voigt, Andrew P., et al.
Publicado: (2017) -
Therapeutic targeting of PRAME with (mTCR)CAR T cells in acute myeloid leukemia
por: Kirkey, Danielle C., et al.
Publicado: (2022) -
Machine Learning Supports Automated Digital Image Scoring of Stool Consistency in Diapers
por: Ludwig, Thomas, et al.
Publicado: (2021)