Cargando…
Development of an Automated MRI-Based Diagnostic Protocol for Amyotrophic Lateral Sclerosis Using Disease-Specific Pathognomonic Features: A Quantitative Disease-State Classification Study
BACKGROUND: Despite significant advances in quantitative neuroimaging, the diagnosis of ALS remains clinical and MRI-based biomarkers are not currently used to aid the diagnosis. The objective of this study is to develop a robust, disease-specific, multimodal classification protocol and validate its...
Autores principales: | Schuster, Christina, Hardiman, Orla, Bede, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132189/ https://www.ncbi.nlm.nih.gov/pubmed/27907080 http://dx.doi.org/10.1371/journal.pone.0167331 |
Ejemplares similares
-
Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics
por: Schuster, Christina, et al.
Publicado: (2017) -
Pathological neural networks and artificial neural networks in ALS: diagnostic classification based on pathognomonic neuroimaging features
por: Bede, Peter, et al.
Publicado: (2021) -
Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns
por: Bede, Peter, et al.
Publicado: (2017) -
Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm
por: Elamin, Marwa, et al.
Publicado: (2015) -
Dysfunction of attention switching networks in amyotrophic lateral sclerosis
por: McMackin, Roisin, et al.
Publicado: (2019)