Cargando…
Uncover miRNA-Disease Association by Exploiting Global Network Similarity
Identification of miRNA-disease association is a fundamental challenge in human health clinic. However, the known miRNA-disease associations are rare and experimental verification methods are expensive and time-consuming. Therefore, there is a strong incentive to develop computational methods. In th...
Autores principales: | Chen, Min, Lu, Xingguo, Liao, Bo, Li, Zejun, Cai, Lijun, Gu, Changlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132253/ https://www.ncbi.nlm.nih.gov/pubmed/27907011 http://dx.doi.org/10.1371/journal.pone.0166509 |
Ejemplares similares
-
Global network random walk for predicting potential human lncRNA-disease associations
por: Gu, Changlong, et al.
Publicado: (2017) -
Network Consistency Projection for Human miRNA-Disease Associations Inference
por: Gu, Changlong, et al.
Publicado: (2016) -
SRMDAP: SimRank and Density-Based Clustering Recommender Model for miRNA-Disease Association Prediction
por: Li, Xiaoying, et al.
Publicado: (2018) -
Dysregulation of miRNA in Leukemia: Exploiting miRNA Expression Profiles as Biomarkers
por: Anelli, Luisa, et al.
Publicado: (2021) -
Global Similarity Method Based on a Two-tier Random Walk for the Prediction of microRNA–Disease Association
por: Chen, Min, et al.
Publicado: (2018)