Cargando…

A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes)

A very significant part of the world’s freshwater ichthyofauna is represented by ancient, exceptionally diverse and cosmopolitan ray-finned teleosts of the order Siluriformes. Over the years, catfish have been established as an exemplary model for probing historical biogeography at various scales. Y...

Descripción completa

Detalles Bibliográficos
Autores principales: Kappas, Ilias, Vittas, Spiros, Pantzartzi, Chrysoula N., Drosopoulou, Elena, Scouras, Zacharias G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132296/
https://www.ncbi.nlm.nih.gov/pubmed/27907107
http://dx.doi.org/10.1371/journal.pone.0166988
_version_ 1782471045989531648
author Kappas, Ilias
Vittas, Spiros
Pantzartzi, Chrysoula N.
Drosopoulou, Elena
Scouras, Zacharias G.
author_facet Kappas, Ilias
Vittas, Spiros
Pantzartzi, Chrysoula N.
Drosopoulou, Elena
Scouras, Zacharias G.
author_sort Kappas, Ilias
collection PubMed
description A very significant part of the world’s freshwater ichthyofauna is represented by ancient, exceptionally diverse and cosmopolitan ray-finned teleosts of the order Siluriformes. Over the years, catfish have been established as an exemplary model for probing historical biogeography at various scales. Yet, several tantalizing gaps still exist in their phylogenetic history, timeline and mode of diversification. Here, we re-examine the phylogeny of catfish by assembling and analyzing almost all publicly available mitogenome data. We constructed an ingroup matrix of 62 full-length mitogenome sequences from 20 catfish families together with four cypriniform outgroups, spanning 15,557 positions in total. Partitioned maximum likelihood analyses and Bayesian relaxed clock dating using fossil age constraints provide some useful and novel insights into the evolutionary history of this group. Loricarioidei are recovered as the first siluriform group to diversify, rendering Neotropics the cradle of the order. The next deepest clade is the South American Diplomystoidei placed as a sister group to all the remaining Siluroidei. The two multifamilial clades of “Big Asia” and “Big Africa” are also recovered, albeit nodal support for the latter is poor. Within “Big Asia”, Bagridae are clearly polyphyletic. Other interfamilial relationships, including Clariidae + Heteropneustidae, Doradidae + Auchenipteridae and Ictaluridae + Cranoglanididae are robustly resolved. Our chronogram shows that siluriforms have a Pangaean origin, at least as far back as the Early Cretaceous. The inferred timeline of the basal splits corroborates the “Out-of-South America” hypothesis and accords well with the fossil record. The divergence of Siluroidei most likely postdated the final separation of Africa and South America. An appealing case of phylogenetic affinity elaborated by biogeographic dispersal is exemplified by the Early Paleogene split between the Southeast Asian Cranoglanididae and Ictaluridae, with the latter radiating into North America’s freshwater realm by Eocene. The end of Cretaceous probably concludes the major bout of diversification at the family level while with the dawn of the Cenozoic a prolific radiation is evident at the generic level.
format Online
Article
Text
id pubmed-5132296
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-51322962016-12-21 A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes) Kappas, Ilias Vittas, Spiros Pantzartzi, Chrysoula N. Drosopoulou, Elena Scouras, Zacharias G. PLoS One Research Article A very significant part of the world’s freshwater ichthyofauna is represented by ancient, exceptionally diverse and cosmopolitan ray-finned teleosts of the order Siluriformes. Over the years, catfish have been established as an exemplary model for probing historical biogeography at various scales. Yet, several tantalizing gaps still exist in their phylogenetic history, timeline and mode of diversification. Here, we re-examine the phylogeny of catfish by assembling and analyzing almost all publicly available mitogenome data. We constructed an ingroup matrix of 62 full-length mitogenome sequences from 20 catfish families together with four cypriniform outgroups, spanning 15,557 positions in total. Partitioned maximum likelihood analyses and Bayesian relaxed clock dating using fossil age constraints provide some useful and novel insights into the evolutionary history of this group. Loricarioidei are recovered as the first siluriform group to diversify, rendering Neotropics the cradle of the order. The next deepest clade is the South American Diplomystoidei placed as a sister group to all the remaining Siluroidei. The two multifamilial clades of “Big Asia” and “Big Africa” are also recovered, albeit nodal support for the latter is poor. Within “Big Asia”, Bagridae are clearly polyphyletic. Other interfamilial relationships, including Clariidae + Heteropneustidae, Doradidae + Auchenipteridae and Ictaluridae + Cranoglanididae are robustly resolved. Our chronogram shows that siluriforms have a Pangaean origin, at least as far back as the Early Cretaceous. The inferred timeline of the basal splits corroborates the “Out-of-South America” hypothesis and accords well with the fossil record. The divergence of Siluroidei most likely postdated the final separation of Africa and South America. An appealing case of phylogenetic affinity elaborated by biogeographic dispersal is exemplified by the Early Paleogene split between the Southeast Asian Cranoglanididae and Ictaluridae, with the latter radiating into North America’s freshwater realm by Eocene. The end of Cretaceous probably concludes the major bout of diversification at the family level while with the dawn of the Cenozoic a prolific radiation is evident at the generic level. Public Library of Science 2016-12-01 /pmc/articles/PMC5132296/ /pubmed/27907107 http://dx.doi.org/10.1371/journal.pone.0166988 Text en © 2016 Kappas et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kappas, Ilias
Vittas, Spiros
Pantzartzi, Chrysoula N.
Drosopoulou, Elena
Scouras, Zacharias G.
A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes)
title A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes)
title_full A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes)
title_fullStr A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes)
title_full_unstemmed A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes)
title_short A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes)
title_sort time-calibrated mitogenome phylogeny of catfish (teleostei: siluriformes)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132296/
https://www.ncbi.nlm.nih.gov/pubmed/27907107
http://dx.doi.org/10.1371/journal.pone.0166988
work_keys_str_mv AT kappasilias atimecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes
AT vittasspiros atimecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes
AT pantzartzichrysoulan atimecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes
AT drosopoulouelena atimecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes
AT scouraszachariasg atimecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes
AT kappasilias timecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes
AT vittasspiros timecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes
AT pantzartzichrysoulan timecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes
AT drosopoulouelena timecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes
AT scouraszachariasg timecalibratedmitogenomephylogenyofcatfishteleosteisiluriformes