Cargando…

A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations

BACKGROUND: The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many corr...

Descripción completa

Detalles Bibliográficos
Autores principales: Agier, Lydiane, Portengen, Lützen, Chadeau-Hyam, Marc, Basagaña, Xavier, Giorgis-Allemand, Lise, Siroux, Valérie, Robinson, Oliver, Vlaanderen, Jelle, González, Juan R., Nieuwenhuijsen, Mark J., Vineis, Paolo, Vrijheid, Martine, Slama, Rémy, Vermeulen, Roel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132632/
https://www.ncbi.nlm.nih.gov/pubmed/27219331
http://dx.doi.org/10.1289/EHP172
_version_ 1782471112366489600
author Agier, Lydiane
Portengen, Lützen
Chadeau-Hyam, Marc
Basagaña, Xavier
Giorgis-Allemand, Lise
Siroux, Valérie
Robinson, Oliver
Vlaanderen, Jelle
González, Juan R.
Nieuwenhuijsen, Mark J.
Vineis, Paolo
Vrijheid, Martine
Slama, Rémy
Vermeulen, Roel
author_facet Agier, Lydiane
Portengen, Lützen
Chadeau-Hyam, Marc
Basagaña, Xavier
Giorgis-Allemand, Lise
Siroux, Valérie
Robinson, Oliver
Vlaanderen, Jelle
González, Juan R.
Nieuwenhuijsen, Mark J.
Vineis, Paolo
Vrijheid, Martine
Slama, Rémy
Vermeulen, Roel
author_sort Agier, Lydiane
collection PubMed
description BACKGROUND: The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. OBJECTIVES: We compared the performances of linear regression–based statistical methods in assessing exposome-health associations. METHODS: In a simulation study, we generated 237 exposure covariates with a realistic correlation structure and with a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. RESULTS: On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and an FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm revealed a sensitivity of 81% and an FDP of 34%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%) despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. CONCLUSIONS: Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study were limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. Although GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods. CITATION: Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. 2016. A systematic comparison of linear regression–based statistical methods to assess exposome-health associations. Environ Health Perspect 124:1848–1856; http://dx.doi.org/10.1289/EHP172
format Online
Article
Text
id pubmed-5132632
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher National Institute of Environmental Health Sciences
record_format MEDLINE/PubMed
spelling pubmed-51326322016-12-12 A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations Agier, Lydiane Portengen, Lützen Chadeau-Hyam, Marc Basagaña, Xavier Giorgis-Allemand, Lise Siroux, Valérie Robinson, Oliver Vlaanderen, Jelle González, Juan R. Nieuwenhuijsen, Mark J. Vineis, Paolo Vrijheid, Martine Slama, Rémy Vermeulen, Roel Environ Health Perspect Research BACKGROUND: The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. OBJECTIVES: We compared the performances of linear regression–based statistical methods in assessing exposome-health associations. METHODS: In a simulation study, we generated 237 exposure covariates with a realistic correlation structure and with a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. RESULTS: On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and an FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm revealed a sensitivity of 81% and an FDP of 34%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%) despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. CONCLUSIONS: Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study were limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. Although GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods. CITATION: Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. 2016. A systematic comparison of linear regression–based statistical methods to assess exposome-health associations. Environ Health Perspect 124:1848–1856; http://dx.doi.org/10.1289/EHP172 National Institute of Environmental Health Sciences 2016-05-24 2016-12 /pmc/articles/PMC5132632/ /pubmed/27219331 http://dx.doi.org/10.1289/EHP172 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.
spellingShingle Research
Agier, Lydiane
Portengen, Lützen
Chadeau-Hyam, Marc
Basagaña, Xavier
Giorgis-Allemand, Lise
Siroux, Valérie
Robinson, Oliver
Vlaanderen, Jelle
González, Juan R.
Nieuwenhuijsen, Mark J.
Vineis, Paolo
Vrijheid, Martine
Slama, Rémy
Vermeulen, Roel
A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations
title A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations
title_full A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations
title_fullStr A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations
title_full_unstemmed A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations
title_short A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations
title_sort systematic comparison of linear regression–based statistical methods to assess exposome-health associations
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132632/
https://www.ncbi.nlm.nih.gov/pubmed/27219331
http://dx.doi.org/10.1289/EHP172
work_keys_str_mv AT agierlydiane asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT portengenlutzen asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT chadeauhyammarc asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT basaganaxavier asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT giorgisallemandlise asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT sirouxvalerie asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT robinsonoliver asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT vlaanderenjelle asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT gonzalezjuanr asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT nieuwenhuijsenmarkj asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT vineispaolo asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT vrijheidmartine asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT slamaremy asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT vermeulenroel asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT agierlydiane systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT portengenlutzen systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT chadeauhyammarc systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT basaganaxavier systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT giorgisallemandlise systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT sirouxvalerie systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT robinsonoliver systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT vlaanderenjelle systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT gonzalezjuanr systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT nieuwenhuijsenmarkj systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT vineispaolo systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT vrijheidmartine systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT slamaremy systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations
AT vermeulenroel systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations