Cargando…
A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations
BACKGROUND: The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many corr...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Institute of Environmental Health Sciences
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132632/ https://www.ncbi.nlm.nih.gov/pubmed/27219331 http://dx.doi.org/10.1289/EHP172 |
_version_ | 1782471112366489600 |
---|---|
author | Agier, Lydiane Portengen, Lützen Chadeau-Hyam, Marc Basagaña, Xavier Giorgis-Allemand, Lise Siroux, Valérie Robinson, Oliver Vlaanderen, Jelle González, Juan R. Nieuwenhuijsen, Mark J. Vineis, Paolo Vrijheid, Martine Slama, Rémy Vermeulen, Roel |
author_facet | Agier, Lydiane Portengen, Lützen Chadeau-Hyam, Marc Basagaña, Xavier Giorgis-Allemand, Lise Siroux, Valérie Robinson, Oliver Vlaanderen, Jelle González, Juan R. Nieuwenhuijsen, Mark J. Vineis, Paolo Vrijheid, Martine Slama, Rémy Vermeulen, Roel |
author_sort | Agier, Lydiane |
collection | PubMed |
description | BACKGROUND: The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. OBJECTIVES: We compared the performances of linear regression–based statistical methods in assessing exposome-health associations. METHODS: In a simulation study, we generated 237 exposure covariates with a realistic correlation structure and with a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. RESULTS: On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and an FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm revealed a sensitivity of 81% and an FDP of 34%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%) despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. CONCLUSIONS: Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study were limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. Although GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods. CITATION: Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. 2016. A systematic comparison of linear regression–based statistical methods to assess exposome-health associations. Environ Health Perspect 124:1848–1856; http://dx.doi.org/10.1289/EHP172 |
format | Online Article Text |
id | pubmed-5132632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | National Institute of Environmental Health Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-51326322016-12-12 A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations Agier, Lydiane Portengen, Lützen Chadeau-Hyam, Marc Basagaña, Xavier Giorgis-Allemand, Lise Siroux, Valérie Robinson, Oliver Vlaanderen, Jelle González, Juan R. Nieuwenhuijsen, Mark J. Vineis, Paolo Vrijheid, Martine Slama, Rémy Vermeulen, Roel Environ Health Perspect Research BACKGROUND: The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. OBJECTIVES: We compared the performances of linear regression–based statistical methods in assessing exposome-health associations. METHODS: In a simulation study, we generated 237 exposure covariates with a realistic correlation structure and with a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. RESULTS: On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and an FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm revealed a sensitivity of 81% and an FDP of 34%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%) despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. CONCLUSIONS: Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study were limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. Although GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods. CITATION: Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. 2016. A systematic comparison of linear regression–based statistical methods to assess exposome-health associations. Environ Health Perspect 124:1848–1856; http://dx.doi.org/10.1289/EHP172 National Institute of Environmental Health Sciences 2016-05-24 2016-12 /pmc/articles/PMC5132632/ /pubmed/27219331 http://dx.doi.org/10.1289/EHP172 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright. |
spellingShingle | Research Agier, Lydiane Portengen, Lützen Chadeau-Hyam, Marc Basagaña, Xavier Giorgis-Allemand, Lise Siroux, Valérie Robinson, Oliver Vlaanderen, Jelle González, Juan R. Nieuwenhuijsen, Mark J. Vineis, Paolo Vrijheid, Martine Slama, Rémy Vermeulen, Roel A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations |
title | A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations |
title_full | A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations |
title_fullStr | A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations |
title_full_unstemmed | A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations |
title_short | A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations |
title_sort | systematic comparison of linear regression–based statistical methods to assess exposome-health associations |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5132632/ https://www.ncbi.nlm.nih.gov/pubmed/27219331 http://dx.doi.org/10.1289/EHP172 |
work_keys_str_mv | AT agierlydiane asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT portengenlutzen asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT chadeauhyammarc asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT basaganaxavier asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT giorgisallemandlise asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT sirouxvalerie asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT robinsonoliver asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT vlaanderenjelle asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT gonzalezjuanr asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT nieuwenhuijsenmarkj asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT vineispaolo asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT vrijheidmartine asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT slamaremy asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT vermeulenroel asystematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT agierlydiane systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT portengenlutzen systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT chadeauhyammarc systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT basaganaxavier systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT giorgisallemandlise systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT sirouxvalerie systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT robinsonoliver systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT vlaanderenjelle systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT gonzalezjuanr systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT nieuwenhuijsenmarkj systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT vineispaolo systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT vrijheidmartine systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT slamaremy systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations AT vermeulenroel systematiccomparisonoflinearregressionbasedstatisticalmethodstoassessexposomehealthassociations |