Cargando…
Promises, Pitfalls, and Basic Guidelines for Applying Machine Learning Classifiers to Psychiatric Imaging Data, with Autism as an Example
Most psychiatric disorders are associated with subtle alterations in brain function and are subject to large interindividual differences. Typically, the diagnosis of these disorders requires time-consuming behavioral assessments administered by a multidisciplinary team with extensive experience. Whi...
Autores principales: | Kassraian-Fard, Pegah, Matthis, Caroline, Balsters, Joshua H., Maathuis, Marloes H., Wenderoth, Nicole |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133050/ https://www.ncbi.nlm.nih.gov/pubmed/27990125 http://dx.doi.org/10.3389/fpsyt.2016.00177 |
Ejemplares similares
-
Neural activity related to volitional regulation of cortical excitability
por: Ruddy, Kathy, et al.
Publicado: (2018) -
The promises and pitfalls of applying computational models to neurological and psychiatric disorders
por: Teufel, Christoph, et al.
Publicado: (2016) -
A generative growth model for thalamocortical axonal branching in primary visual cortex
por: Kassraian-Fard, Pegah, et al.
Publicado: (2020) -
Disrupted prediction errors index social deficits in autism spectrum disorder
por: Balsters, Joshua H, et al.
Publicado: (2017) -
The promise and pitfalls of community-based monitoring with a focus on Canadian examples
por: Mamun, Abdullah Al, et al.
Publicado: (2023)