Cargando…
Comparison of parametric and machine methods for variable selection in simulated Genetic Analysis Workshop 19 data
Current findings from genetic studies of complex human traits often do not explain a large proportion of the estimated variation of these traits due to genetic factors. This could be, in part, due to overly stringent significance thresholds in traditional statistical methods, such as linear and logi...
Autores principales: | Holzinger, Emily R., Szymczak, Silke, Malley, James, Pugh, Elizabeth W., Ling, Hua, Griffith, Sean, Zhang, Peng, Li, Qing, Cropp, Cheryl D., Bailey-Wilson, Joan E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133476/ https://www.ncbi.nlm.nih.gov/pubmed/27980627 http://dx.doi.org/10.1186/s12919-016-0021-1 |
Ejemplares similares
-
False-positive rates in two-point parametric linkage analysis
por: Szymczak, Silke, et al.
Publicado: (2014) -
Performance of random forests and logic regression methods using mini-exome sequence data
por: Kim, Yoonhee, et al.
Publicado: (2011) -
Comparison of results from tests of association in unrelated individuals with uncollapsed and collapsed sequence variants using tiled regression
por: Sung, Heejong, et al.
Publicado: (2011) -
Machine learning and data mining in complex genomic data—a review on the lessons learned in Genetic Analysis Workshop 19
por: König, Inke R., et al.
Publicado: (2016) -
Application of sex-specific single-nucleotide polymorphism filters in genome-wide association data
por: Ling, Hua, et al.
Publicado: (2009)