Cargando…
Using gene expression data to identify causal pathways between genotype and phenotype in a complex disease: application to Genetic Analysis Workshop 19
We explore causal relationships between genotype, gene expression and phenotype in the Genetic Analysis Workshop 19 data. We compare the use of structural equation modeling and a Bayesian unified framework approach to infer the most likely causal models that gave rise to the data. Testing an exhaust...
Autores principales: | Ainsworth, Holly F., Cordell, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133478/ https://www.ncbi.nlm.nih.gov/pubmed/27980615 http://dx.doi.org/10.1186/s12919-016-0009-x |
Ejemplares similares
-
Penalized-regression-based multimarker genotype analysis of Genetic Analysis Workshop 17 data
por: Ayers, Kristin L, et al.
Publicado: (2011) -
Examination of previously identified associations within the Genetic Analysis Workshop 19 data
por: Howey, Richard A. J., et al.
Publicado: (2016) -
Accounting for relatedness in family-based association studies: application to Genetic Analysis Workshop 18 data
por: Eu-ahsunthornwattana, Jakris, et al.
Publicado: (2014) -
Analysis of Genetic Analysis Workshop 18 data with gene-based penalized regression
por: Ayers, Kristin L, et al.
Publicado: (2014) -
Linkage analysis of a derived glucose phenotype in the Genetic Analysis Workshop 13 simulated data using a variety of Haseman-Elston based regression methods
por: Cordell, Heather J, et al.
Publicado: (2003)