Cargando…

Genetic complexity at expression quantitative trait loci

BACKGROUND: Identifying variants that regulate gene expression and delineating their genetic architecture is a critical next step in our endeavors to better understand the genetic etiology of complex diseases. The appropriate genomic tools are in place, and preliminary analytic strategies have been...

Descripción completa

Detalles Bibliográficos
Autores principales: Cantor, Rita M., Pan, Calvin, Siegmund, Kimberly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133498/
https://www.ncbi.nlm.nih.gov/pubmed/27980616
http://dx.doi.org/10.1186/s12919-016-0010-4
Descripción
Sumario:BACKGROUND: Identifying variants that regulate gene expression and delineating their genetic architecture is a critical next step in our endeavors to better understand the genetic etiology of complex diseases. The appropriate genomic tools are in place, and preliminary analytic strategies have been developed. METHODS: Here we used Genetic Analysis Workshop (GAW) 19 data to investigate the genetic complexity of expression quantitative trait loci (eQTL), chromosomal regions likely to harbor regulatory elements responsible for gene expression. For this investigation, we analyzed the lymphocyte expression profiles of 653 individuals in 20 pedigrees who were also genotyped by single nucleotide polymorphism (SNP) arrays, followed by sequencing and imputation. We used these data to examine the degree of allelic heterogeneity, a contributor to genetic complexity at eQTL, by sequentially conditioning on the most significantly associated SNPs. RESULT: SOLAR (Sequential Oligogenic Linkage Analysis Routines)-MGA (measured genotype approach) and FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) software allowed us to analyze pedigree data. The power and Type 1 error rates for single SNP association testing and multiple SNP sequential association testing were consistent for these programs. Sequential conditioning of the real expression data revealed substantial levels of allelic heterogeneity at the 2 eQTL examined, illustrating this feature of genetic complexity. CONCLUSIONS: eQTL exhibit substantial genetic complexity among and within pedigrees.