Cargando…
Independent test assessment using the extreme value distribution theory
The new generation of whole genome sequencing platforms offers great possibilities and challenges for dissecting the genetic basis of complex traits. With a very high number of sequence variants, a naïve multiple hypothesis threshold correction hinders the identification of reliable associations by...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133519/ https://www.ncbi.nlm.nih.gov/pubmed/27980644 http://dx.doi.org/10.1186/s12919-016-0038-5 |
_version_ | 1782471279700344832 |
---|---|
author | Almeida, Marcio Blondell, Lucy Peralta, Juan M. Kent, Jack W. Jun, Goo Teslovich, Tanya M. Fuchsberger, Christian Wood, Andrew R. Manning, Alisa K. Frayling, Timothy M. Cingolani, Pablo E. Sladek, Robert Dyer, Thomas D. Abecasis, Goncalo Duggirala, Ravindranath Blangero, John |
author_facet | Almeida, Marcio Blondell, Lucy Peralta, Juan M. Kent, Jack W. Jun, Goo Teslovich, Tanya M. Fuchsberger, Christian Wood, Andrew R. Manning, Alisa K. Frayling, Timothy M. Cingolani, Pablo E. Sladek, Robert Dyer, Thomas D. Abecasis, Goncalo Duggirala, Ravindranath Blangero, John |
author_sort | Almeida, Marcio |
collection | PubMed |
description | The new generation of whole genome sequencing platforms offers great possibilities and challenges for dissecting the genetic basis of complex traits. With a very high number of sequence variants, a naïve multiple hypothesis threshold correction hinders the identification of reliable associations by the overreduction of statistical power. In this report, we examine 2 alternative approaches to improve the statistical power of a whole genome association study to detect reliable genetic associations. The approaches were tested using the Genetic Analysis Workshop 19 (GAW19) whole genome sequencing data. The first tested method estimates the real number of effective independent tests actually being performed in whole genome association project by the use of an extreme value distribution and a set of phenotype simulations. Given the familiar nature of the GAW19 data and the finite number of pedigree founders in the sample, the number of correlations between genotypes is greater than in a set of unrelated samples. Using our procedure, we estimate that the effective number represents only 15 % of the total number of independent tests performed. However, even using this corrected significance threshold, no genome-wide significant association could be detected for systolic and diastolic blood pressure traits. The second approach implements a biological relevance-driven hypothesis tested by exploiting prior computational predictions on the effect of nonsynonymous genetic variants detected in a whole genome sequencing association study. This guided testing approach was able to identify 2 promising single-nucleotide polymorphisms (SNPs), 1 for each trait, targeting biologically relevant genes that could help shed light on the genesis of the human hypertension. The first gene, PFH14, associated with systolic blood pressure, interacts directly with genes involved in calcium-channel formation and the second gene, MAP4, encodes a microtubule-associated protein and had already been detected by previous genome-wide association study experiments conducted in an Asian population. Our results highlight the necessity of the development of alternative approached to improve the efficiency on the detection of reasonable candidate associations in whole genome sequencing studies. |
format | Online Article Text |
id | pubmed-5133519 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-51335192016-12-15 Independent test assessment using the extreme value distribution theory Almeida, Marcio Blondell, Lucy Peralta, Juan M. Kent, Jack W. Jun, Goo Teslovich, Tanya M. Fuchsberger, Christian Wood, Andrew R. Manning, Alisa K. Frayling, Timothy M. Cingolani, Pablo E. Sladek, Robert Dyer, Thomas D. Abecasis, Goncalo Duggirala, Ravindranath Blangero, John BMC Proc Proceedings The new generation of whole genome sequencing platforms offers great possibilities and challenges for dissecting the genetic basis of complex traits. With a very high number of sequence variants, a naïve multiple hypothesis threshold correction hinders the identification of reliable associations by the overreduction of statistical power. In this report, we examine 2 alternative approaches to improve the statistical power of a whole genome association study to detect reliable genetic associations. The approaches were tested using the Genetic Analysis Workshop 19 (GAW19) whole genome sequencing data. The first tested method estimates the real number of effective independent tests actually being performed in whole genome association project by the use of an extreme value distribution and a set of phenotype simulations. Given the familiar nature of the GAW19 data and the finite number of pedigree founders in the sample, the number of correlations between genotypes is greater than in a set of unrelated samples. Using our procedure, we estimate that the effective number represents only 15 % of the total number of independent tests performed. However, even using this corrected significance threshold, no genome-wide significant association could be detected for systolic and diastolic blood pressure traits. The second approach implements a biological relevance-driven hypothesis tested by exploiting prior computational predictions on the effect of nonsynonymous genetic variants detected in a whole genome sequencing association study. This guided testing approach was able to identify 2 promising single-nucleotide polymorphisms (SNPs), 1 for each trait, targeting biologically relevant genes that could help shed light on the genesis of the human hypertension. The first gene, PFH14, associated with systolic blood pressure, interacts directly with genes involved in calcium-channel formation and the second gene, MAP4, encodes a microtubule-associated protein and had already been detected by previous genome-wide association study experiments conducted in an Asian population. Our results highlight the necessity of the development of alternative approached to improve the efficiency on the detection of reasonable candidate associations in whole genome sequencing studies. BioMed Central 2016-10-18 /pmc/articles/PMC5133519/ /pubmed/27980644 http://dx.doi.org/10.1186/s12919-016-0038-5 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Proceedings Almeida, Marcio Blondell, Lucy Peralta, Juan M. Kent, Jack W. Jun, Goo Teslovich, Tanya M. Fuchsberger, Christian Wood, Andrew R. Manning, Alisa K. Frayling, Timothy M. Cingolani, Pablo E. Sladek, Robert Dyer, Thomas D. Abecasis, Goncalo Duggirala, Ravindranath Blangero, John Independent test assessment using the extreme value distribution theory |
title | Independent test assessment using the extreme value distribution theory |
title_full | Independent test assessment using the extreme value distribution theory |
title_fullStr | Independent test assessment using the extreme value distribution theory |
title_full_unstemmed | Independent test assessment using the extreme value distribution theory |
title_short | Independent test assessment using the extreme value distribution theory |
title_sort | independent test assessment using the extreme value distribution theory |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133519/ https://www.ncbi.nlm.nih.gov/pubmed/27980644 http://dx.doi.org/10.1186/s12919-016-0038-5 |
work_keys_str_mv | AT almeidamarcio independenttestassessmentusingtheextremevaluedistributiontheory AT blondelllucy independenttestassessmentusingtheextremevaluedistributiontheory AT peraltajuanm independenttestassessmentusingtheextremevaluedistributiontheory AT kentjackw independenttestassessmentusingtheextremevaluedistributiontheory AT jungoo independenttestassessmentusingtheextremevaluedistributiontheory AT teslovichtanyam independenttestassessmentusingtheextremevaluedistributiontheory AT fuchsbergerchristian independenttestassessmentusingtheextremevaluedistributiontheory AT woodandrewr independenttestassessmentusingtheextremevaluedistributiontheory AT manningalisak independenttestassessmentusingtheextremevaluedistributiontheory AT fraylingtimothym independenttestassessmentusingtheextremevaluedistributiontheory AT cingolanipabloe independenttestassessmentusingtheextremevaluedistributiontheory AT sladekrobert independenttestassessmentusingtheextremevaluedistributiontheory AT dyerthomasd independenttestassessmentusingtheextremevaluedistributiontheory AT abecasisgoncalo independenttestassessmentusingtheextremevaluedistributiontheory AT duggiralaravindranath independenttestassessmentusingtheextremevaluedistributiontheory AT blangerojohn independenttestassessmentusingtheextremevaluedistributiontheory |