Cargando…
Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data
Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised...
Autores principales: | Held, Elizabeth, Cape, Joshua, Tintle, Nathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133520/ https://www.ncbi.nlm.nih.gov/pubmed/27980626 http://dx.doi.org/10.1186/s12919-016-0020-2 |
Ejemplares similares
-
Comparing logistic regression, support vector machines, and permanental classification methods in predicting hypertension
por: Huang, Hsin-Hsiung, et al.
Publicado: (2014) -
Practical investigation of the performance of robust logistic regression to predict the genetic risk of hypertension
por: Kesselmeier, Miriam, et al.
Publicado: (2014) -
A 2-step penalized regression method for family-based next-generation sequencing association studies
por: Ding, Xiuhua, et al.
Publicado: (2014) -
Machine learning and data mining in complex genomic data—a review on the lessons learned in Genetic Analysis Workshop 19
por: König, Inke R., et al.
Publicado: (2016) -
Comparing nominal and real quality scores on next-generation sequencing genotype calls
por: Stram, Alexander H
Publicado: (2011)