Cargando…
A LASSO penalized regression approach for genome-wide association analyses using related individuals: application to the Genetic Analysis Workshop 19 simulated data
We propose a novel LASSO (least absolute shrinkage and selection operator) penalized regression method used to analyze samples consisting of (potentially) related individuals. Developed in the context of linear mixed models, our method models the relatedness of individuals in the sample through a ra...
Autores principales: | Papachristou, Charalampos, Ober, Carole, Abney, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133525/ https://www.ncbi.nlm.nih.gov/pubmed/27980640 http://dx.doi.org/10.1186/s12919-016-0034-9 |
Ejemplares similares
-
Evaluation of a LASSO regression approach on the unrelated samples of Genetic Analysis Workshop 17
por: Guo, Wei, et al.
Publicado: (2011) -
Evaluation of logistic Bayesian LASSO for identifying association with rare haplotypes
por: Biswas, Swati, et al.
Publicado: (2014) -
Confidence set of putative quantitative trait loci in whole genome scans with application to the Genetic Analysis Workshop 17 simulated data
por: Papachristou, Charalampos
Publicado: (2011) -
Analysis of Genetic Analysis Workshop 18 data with gene-based penalized regression
por: Ayers, Kristin L, et al.
Publicado: (2014) -
Penalized-regression-based multimarker genotype analysis of Genetic Analysis Workshop 17 data
por: Ayers, Kristin L, et al.
Publicado: (2011)