Cargando…
Work extraction from quantum systems with bounded fluctuations in work
In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuati...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133619/ https://www.ncbi.nlm.nih.gov/pubmed/27886177 http://dx.doi.org/10.1038/ncomms13511 |
Sumario: | In the standard framework of thermodynamics, work is a random variable whose average is bounded by the change in free energy of the system. This average work is calculated without regard for the size of its fluctuations. Here we show that for some processes, such as reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable to cope with arbitrarily large fluctuations. Hence, it is important to understand how thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work content and work of formation of arbitrary finite dimensional quantum states when the fluctuations in work are bounded by a given amount c. By varying c we interpolate between the standard and minimum free energies. We derive fundamental trade-offs between the magnitude of work and its fluctuations. As one application of these results, we derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations. |
---|