Cargando…

The Hha-TomB Toxin-Antitoxin System Shows Conditional Toxicity and Promotes Persister Cell Formation by Inhibiting Apoptosis-Like Death in S. Typhimurium

Toxin-antitoxin (TA) modules are two component “addictive” genetic elements found on either plasmid or bacterial chromosome, sometimes on both. TA systems perform a wide range of functions like biofilm formation, persistence, programmed cell death, phage abortive infection etc. Salmonella has been r...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaiswal, Sangeeta, Paul, Prajita, Padhi, Chandrashekhar, Ray, Shilpa, Ryan, Daniel, Dash, Shantoshini, Suar, Mrutyunjay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133643/
https://www.ncbi.nlm.nih.gov/pubmed/27910884
http://dx.doi.org/10.1038/srep38204
Descripción
Sumario:Toxin-antitoxin (TA) modules are two component “addictive” genetic elements found on either plasmid or bacterial chromosome, sometimes on both. TA systems perform a wide range of functions like biofilm formation, persistence, programmed cell death, phage abortive infection etc. Salmonella has been reported to contain several such TA systems. However, the hemolysin expression modulating protein (Hha) and its adjacent uncharacterized hypothetical protein TomB (previously known as YbaJ), have not been listed as a TA module in Salmonella. In this study we established that Hha and TomB form a bonafide TA system where Hha serves as a toxin while TomB functions as an antitoxin. Interestingly, the toxicity of Hha was conditional causing cell death under acid stress. The antitoxin attenuated the toxicity of Hha by forming a TA complex through stable interactions. The Hha-TomB TA system was found to increase persistence and inhibit programmed cell death under antibiotic stress where a phenotypically diverse population expressing differential level of TA components was observed. Therefore we propose that Hha and TomB prevent cells from committing suicide thereby promoting persister cell formation.