Cargando…

Creating a driving profile for older adults using GPS devices and naturalistic driving methodology

Background/Objectives: Road tests and driving simulators are most commonly used in research studies and clinical evaluations of older drivers. Our objective was to describe the process and associated challenges in adapting an existing, commercial, off-the-shelf (COTS), in-vehicle device for naturali...

Descripción completa

Detalles Bibliográficos
Autores principales: Babulal, Ganesh M., Traub, Cindy M., Webb, Mollie, Stout, Sarah H., Addison, Aaron, Carr, David B., Ott, Brian R., Morris, John C., Roe, Catherine M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000Research 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133689/
https://www.ncbi.nlm.nih.gov/pubmed/27990264
http://dx.doi.org/10.12688/f1000research.9608.2
_version_ 1782471317383020544
author Babulal, Ganesh M.
Traub, Cindy M.
Webb, Mollie
Stout, Sarah H.
Addison, Aaron
Carr, David B.
Ott, Brian R.
Morris, John C.
Roe, Catherine M.
author_facet Babulal, Ganesh M.
Traub, Cindy M.
Webb, Mollie
Stout, Sarah H.
Addison, Aaron
Carr, David B.
Ott, Brian R.
Morris, John C.
Roe, Catherine M.
author_sort Babulal, Ganesh M.
collection PubMed
description Background/Objectives: Road tests and driving simulators are most commonly used in research studies and clinical evaluations of older drivers. Our objective was to describe the process and associated challenges in adapting an existing, commercial, off-the-shelf (COTS), in-vehicle device for naturalistic, longitudinal research to better understand daily driving behavior in older drivers. Design: The Azuga G2 Tracking Device (TM )was installed in each participant’s vehicle, and we collected data over 5 months (speed, latitude/longitude) every 30-seconds when the vehicle was driven.  Setting: The Knight Alzheimer’s Disease Research Center at Washington University School of Medicine. Participants: Five individuals enrolled in a larger, longitudinal study assessing preclinical Alzheimer disease and driving performance.  Participants were aged 65+ years and had normal cognition. Measurements:  Spatial components included Primary Location(s), Driving Areas, Mean Centers and Unique Destinations.  Temporal components included number of trips taken during different times of the day.  Behavioral components included number of hard braking, speeding and sudden acceleration events. Methods:  Individual 30-second observations, each comprising one breadcrumb, and trip-level data were collected and analyzed in R and ArcGIS.  Results: Primary locations were confirmed to be 100% accurate when compared to known addresses.  Based on the locations of the breadcrumbs, we were able to successfully identify frequently visited locations and general travel patterns.  Based on the reported time from the breadcrumbs, we could assess number of trips driven in daylight vs. night.  Data on additional events while driving allowed us to compute the number of adverse driving alerts over the course of the 5-month period. Conclusions: Compared to cameras and highly instrumented vehicle in other naturalistic studies, the compact COTS device was quickly installed and transmitted high volumes of data. Driving Profiles for older adults can be created and compared month-to-month or year-to-year, allowing researchers to identify changes in driving patterns that are unavailable in controlled conditions.
format Online
Article
Text
id pubmed-5133689
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher F1000Research
record_format MEDLINE/PubMed
spelling pubmed-51336892016-12-16 Creating a driving profile for older adults using GPS devices and naturalistic driving methodology Babulal, Ganesh M. Traub, Cindy M. Webb, Mollie Stout, Sarah H. Addison, Aaron Carr, David B. Ott, Brian R. Morris, John C. Roe, Catherine M. F1000Res Method Article Background/Objectives: Road tests and driving simulators are most commonly used in research studies and clinical evaluations of older drivers. Our objective was to describe the process and associated challenges in adapting an existing, commercial, off-the-shelf (COTS), in-vehicle device for naturalistic, longitudinal research to better understand daily driving behavior in older drivers. Design: The Azuga G2 Tracking Device (TM )was installed in each participant’s vehicle, and we collected data over 5 months (speed, latitude/longitude) every 30-seconds when the vehicle was driven.  Setting: The Knight Alzheimer’s Disease Research Center at Washington University School of Medicine. Participants: Five individuals enrolled in a larger, longitudinal study assessing preclinical Alzheimer disease and driving performance.  Participants were aged 65+ years and had normal cognition. Measurements:  Spatial components included Primary Location(s), Driving Areas, Mean Centers and Unique Destinations.  Temporal components included number of trips taken during different times of the day.  Behavioral components included number of hard braking, speeding and sudden acceleration events. Methods:  Individual 30-second observations, each comprising one breadcrumb, and trip-level data were collected and analyzed in R and ArcGIS.  Results: Primary locations were confirmed to be 100% accurate when compared to known addresses.  Based on the locations of the breadcrumbs, we were able to successfully identify frequently visited locations and general travel patterns.  Based on the reported time from the breadcrumbs, we could assess number of trips driven in daylight vs. night.  Data on additional events while driving allowed us to compute the number of adverse driving alerts over the course of the 5-month period. Conclusions: Compared to cameras and highly instrumented vehicle in other naturalistic studies, the compact COTS device was quickly installed and transmitted high volumes of data. Driving Profiles for older adults can be created and compared month-to-month or year-to-year, allowing researchers to identify changes in driving patterns that are unavailable in controlled conditions. F1000Research 2016-12-07 /pmc/articles/PMC5133689/ /pubmed/27990264 http://dx.doi.org/10.12688/f1000research.9608.2 Text en Copyright: © 2016 Babulal GM et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method Article
Babulal, Ganesh M.
Traub, Cindy M.
Webb, Mollie
Stout, Sarah H.
Addison, Aaron
Carr, David B.
Ott, Brian R.
Morris, John C.
Roe, Catherine M.
Creating a driving profile for older adults using GPS devices and naturalistic driving methodology
title Creating a driving profile for older adults using GPS devices and naturalistic driving methodology
title_full Creating a driving profile for older adults using GPS devices and naturalistic driving methodology
title_fullStr Creating a driving profile for older adults using GPS devices and naturalistic driving methodology
title_full_unstemmed Creating a driving profile for older adults using GPS devices and naturalistic driving methodology
title_short Creating a driving profile for older adults using GPS devices and naturalistic driving methodology
title_sort creating a driving profile for older adults using gps devices and naturalistic driving methodology
topic Method Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133689/
https://www.ncbi.nlm.nih.gov/pubmed/27990264
http://dx.doi.org/10.12688/f1000research.9608.2
work_keys_str_mv AT babulalganeshm creatingadrivingprofileforolderadultsusinggpsdevicesandnaturalisticdrivingmethodology
AT traubcindym creatingadrivingprofileforolderadultsusinggpsdevicesandnaturalisticdrivingmethodology
AT webbmollie creatingadrivingprofileforolderadultsusinggpsdevicesandnaturalisticdrivingmethodology
AT stoutsarahh creatingadrivingprofileforolderadultsusinggpsdevicesandnaturalisticdrivingmethodology
AT addisonaaron creatingadrivingprofileforolderadultsusinggpsdevicesandnaturalisticdrivingmethodology
AT carrdavidb creatingadrivingprofileforolderadultsusinggpsdevicesandnaturalisticdrivingmethodology
AT ottbrianr creatingadrivingprofileforolderadultsusinggpsdevicesandnaturalisticdrivingmethodology
AT morrisjohnc creatingadrivingprofileforolderadultsusinggpsdevicesandnaturalisticdrivingmethodology
AT roecatherinem creatingadrivingprofileforolderadultsusinggpsdevicesandnaturalisticdrivingmethodology