Cargando…
Predicting Protein–Protein Interaction Sites Using Sequence Descriptors and Site Propensity of Neighboring Amino Acids
Information about the interface sites of Protein–Protein Interactions (PPIs) is useful for many biological research works. However, despite the advancement of experimental techniques, the identification of PPI sites still remains as a challenging task. Using a statistical learning technique, we prop...
Autores principales: | Kuo, Tzu-Hao, Li, Kuo-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133789/ https://www.ncbi.nlm.nih.gov/pubmed/27792167 http://dx.doi.org/10.3390/ijms17111788 |
Ejemplares similares
-
A novel matrix of sequence descriptors for predicting protein-protein interactions from amino acid sequences
por: Wang, Xue, et al.
Publicado: (2019) -
iSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific Amino Acid Propensity into Pseudo Amino Acid Composition
por: Xu, Yan, et al.
Publicado: (2013) -
Interaction site prediction by structural similarity to neighboring clusters in protein-protein interaction networks
por: Monji, Hiroyuki, et al.
Publicado: (2011) -
Improving Predictions of Protein-Protein Interfaces by Combining Amino Acid-Specific Classifiers Based on Structural and Physicochemical Descriptors with Their Weighted Neighbor Averages
por: de Moraes, Fábio R., et al.
Publicado: (2014) -
Prediction of protein–protein interaction sites by means of ensemble learning and weighted feature descriptor
por: Du, Xiuquan, et al.
Publicado: (2016)