Cargando…
Chemically and thermally stable silica nanowires with a β-sheet peptide core for bionanotechnology
BACKGROUND: A series of amyloidogenic peptides based on the sequence KFFEAAAKKFFE template the silica precursor, tetraethyl orthosilicate to form silica-nanowires containing a cross-β peptide core. RESULTS: Investigation of the stability of these fibres reveals that the silica layers protect the sil...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134108/ https://www.ncbi.nlm.nih.gov/pubmed/27905946 http://dx.doi.org/10.1186/s12951-016-0231-8 |
Sumario: | BACKGROUND: A series of amyloidogenic peptides based on the sequence KFFEAAAKKFFE template the silica precursor, tetraethyl orthosilicate to form silica-nanowires containing a cross-β peptide core. RESULTS: Investigation of the stability of these fibres reveals that the silica layers protect the silica-nanowires allowing them to maintain their shape and physical and chemical properties after incubation with organic solvents such as 2-propanol, ethanol, and acetonitrile, as well as in a strong acidic solution at pH 1.5. Furthermore, these nanowires were thermally stable in an aqueous solution when heated up to 70 °C, and upon autoclaving. They also preserved their conformation following incubation up to 4 weeks under these harsh conditions, and showed exceptionally high physical stability up to 1000 °C after ageing for 12 months. We show that they maintain their β-sheet peptide core even after harsh treatment by confirming the β-sheet content using Fourier transform infrared spectra. The silica nanowires show significantly higher chemical and thermal stability compared to the unsiliconised fibrils. CONCLUSIONS: The notable chemical and thermal stability of these silica nanowires points to their potential for use in microelectromechanics processes or fabrication for nanotechnological devices. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12951-016-0231-8) contains supplementary material, which is available to authorized users. |
---|