Cargando…

Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates

Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuo, Cai-Xia, Wang, Li-Hui, Feng, Jing-Jing, Zhang, Yao-Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134428/
https://www.ncbi.nlm.nih.gov/pubmed/27834849
http://dx.doi.org/10.3390/s16111477
Descripción
Sumario:Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a cysteine terminus and can be conjugated to DNA-stabilized silver nanoclusters (DNA-AgNCs) by Ag-S bonding to enhance fluorescence. The peptide probe can also be adsorbed to the surface of graphene oxide (GO), thus resulting in the fluorescence quenching of DNA-AgNCs-peptide conjugate because of Förster resonance energy transfer. Once trypsin had degraded the peptide probe into amino acid residues, the DNA-AgNCs were released from the surface of GO, and the enhanced fluorescence of DNA-AgNCs was restored. Trypsin can be determined with a linear range of 0.0–50.0 ng/mL with a concentration as low as 1 ng/mL. This label-free method is simple and sensitive and has been successfully used for the determination of trypsin in serum. The method can also be modified to detect other proteases.