Cargando…

Sensitivity and 3 dB Bandwidth in Single and Series-Connected Tunneling Magnetoresistive Sensors

As single tunneling magnetoresistive (TMR) sensor performance in modern high-speed applications is limited by breakdown voltage and saturation of the sensitivity, for higher voltage applications (i.e., compatible to 1.8 V, 3.3 V or 5 V standards) practically only a series connection can be applied....

Descripción completa

Detalles Bibliográficos
Autores principales: Dąbek, Michał, Wiśniowski, Piotr, Stobiecki, Tomasz, Wrona, Jerzy, Cardoso, Susana, Freitas, Paulo P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134480/
https://www.ncbi.nlm.nih.gov/pubmed/27809223
http://dx.doi.org/10.3390/s16111821
Descripción
Sumario:As single tunneling magnetoresistive (TMR) sensor performance in modern high-speed applications is limited by breakdown voltage and saturation of the sensitivity, for higher voltage applications (i.e., compatible to 1.8 V, 3.3 V or 5 V standards) practically only a series connection can be applied. Thus, in this study we focused on sensitivity, 3 dB bandwidth and sensitivity-bandwidth product (SBP) dependence on the DC bias voltage in single and series-connected TMR sensors. We show that, below breakdown voltage, the strong bias influence on sensitivity and the 3 dB frequency of a single sensor results in higher SBP than in a series connection. However, the sensitivity saturation limits the single sensor SBP which, under 1 V, reaches the same level of 2000 MHz∙V/T as in a series connection. Above the single sensor breakdown voltage, linear sensitivity dependence on the bias and the constant 3 dB bandwidth of the series connection enable increasing its SBP up to nearly 10,000 MHz∙V/T under 5 V. Thus, although by tuning bias voltage it is possible to control the sensitivity-bandwidth product, the choice between the single TMR sensor and the series connection is crucial for the optimal performance in the high frequency range.