Cargando…
Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting
A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS) image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT). However, such a system has limited res...
Autores principales: | Huang, Xiwei, Jiang, Yu, Liu, Xu, Xu, Hang, Han, Zhi, Rong, Hailong, Yang, Haiping, Yan, Mei, Yu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134495/ https://www.ncbi.nlm.nih.gov/pubmed/27827837 http://dx.doi.org/10.3390/s16111836 |
Ejemplares similares
-
A Contact-Imaging Based Microfluidic Cytometer with Machine-Learning for Single-Frame Super-Resolution Processing
por: Huang, Xiwei, et al.
Publicado: (2014) -
Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution
por: Sobieranski, Antonio C, et al.
Publicado: (2015) -
Multilayer pixel super-resolution lensless in-line holographic microscope with random sample movement
por: Wang, Mingjun, et al.
Publicado: (2017) -
Pixel Super-Resolution Phase Retrieval for Lensless On-Chip Microscopy via Accelerated Wirtinger Flow
por: Gao, Yunhui, et al.
Publicado: (2022) -
A super-resolution scanning algorithm for lensless microfluidic imaging using the dual-line array image sensor
por: Tian, Dian, et al.
Publicado: (2020)