Cargando…
DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field
Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorith...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134563/ https://www.ncbi.nlm.nih.gov/pubmed/27845717 http://dx.doi.org/10.3390/s16111904 |
_version_ | 1782471481606799360 |
---|---|
author | Christiansen, Peter Nielsen, Lars N. Steen, Kim A. Jørgensen, Rasmus N. Karstoft, Henrik |
author_facet | Christiansen, Peter Nielsen, Lars N. Steen, Kim A. Jørgensen, Rasmus N. Karstoft, Henrik |
author_sort | Christiansen, Peter |
collection | PubMed |
description | Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m) than RCNN. RCNN has a similar performance at a short range (0–30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit). |
format | Online Article Text |
id | pubmed-5134563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-51345632017-01-03 DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field Christiansen, Peter Nielsen, Lars N. Steen, Kim A. Jørgensen, Rasmus N. Karstoft, Henrik Sensors (Basel) Article Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m) than RCNN. RCNN has a similar performance at a short range (0–30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit). MDPI 2016-11-11 /pmc/articles/PMC5134563/ /pubmed/27845717 http://dx.doi.org/10.3390/s16111904 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Christiansen, Peter Nielsen, Lars N. Steen, Kim A. Jørgensen, Rasmus N. Karstoft, Henrik DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field |
title | DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field |
title_full | DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field |
title_fullStr | DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field |
title_full_unstemmed | DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field |
title_short | DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field |
title_sort | deepanomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134563/ https://www.ncbi.nlm.nih.gov/pubmed/27845717 http://dx.doi.org/10.3390/s16111904 |
work_keys_str_mv | AT christiansenpeter deepanomalycombiningbackgroundsubtractionanddeeplearningfordetectingobstaclesandanomaliesinanagriculturalfield AT nielsenlarsn deepanomalycombiningbackgroundsubtractionanddeeplearningfordetectingobstaclesandanomaliesinanagriculturalfield AT steenkima deepanomalycombiningbackgroundsubtractionanddeeplearningfordetectingobstaclesandanomaliesinanagriculturalfield AT jørgensenrasmusn deepanomalycombiningbackgroundsubtractionanddeeplearningfordetectingobstaclesandanomaliesinanagriculturalfield AT karstofthenrik deepanomalycombiningbackgroundsubtractionanddeeplearningfordetectingobstaclesandanomaliesinanagriculturalfield |