Cargando…
DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field
Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorith...
Autores principales: | Christiansen, Peter, Nielsen, Lars N., Steen, Kim A., Jørgensen, Rasmus N., Karstoft, Henrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134563/ https://www.ncbi.nlm.nih.gov/pubmed/27845717 http://dx.doi.org/10.3390/s16111904 |
Ejemplares similares
-
FieldSAFE: Dataset for Obstacle Detection in Agriculture
por: Kragh, Mikkel Fly, et al.
Publicado: (2017) -
Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation
por: Korthals, Timo, et al.
Publicado: (2018) -
Anomaly detection with Deep Learning
por: Raval, Siraj
Publicado: (2017) -
Anomaly Detection for Agricultural Vehicles Using Autoencoders
por: Mujkic, Esma, et al.
Publicado: (2022) -
Face Presentation Attack Detection Using Deep Background Subtraction
por: Benlamoudi, Azeddine, et al.
Publicado: (2022)