Cargando…
Polymerization of a divalent/tetravalent metal-storing atom-mimicking dendrimer
The phenylazomethine dendrimer (DPA) has a layer-by-layer electron density gradient that is an analog of the Bohr atom (atom mimicry). In combination with electron pair mimicry, the polymerization of this atom-mimicking dendrimer was achieved. The valency of the mimicked atom was controlled by chang...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135387/ https://www.ncbi.nlm.nih.gov/pubmed/27957538 http://dx.doi.org/10.1126/sciadv.1601414 |
Sumario: | The phenylazomethine dendrimer (DPA) has a layer-by-layer electron density gradient that is an analog of the Bohr atom (atom mimicry). In combination with electron pair mimicry, the polymerization of this atom-mimicking dendrimer was achieved. The valency of the mimicked atom was controlled by changing the chemical structure of the dendrimer. By mimicking a divalent atom, a one-dimensional (1D) polymer was obtained, and by using a planar tetravalent atom mimic, a 2D polymer was obtained. These poly(dendrimer) polymers could store Lewis acids (SnCl(2)) in their unoccupied orbitals, thus indicating that these poly(dendrimer) polymers consist of a series of nanocontainers. |
---|