Cargando…

Cornel Iridoid Glycoside Improves Locomotor Impairment and Decreases Spinal Cord Damage in Rats

Purpose. This study was to investigate the effects of cornel iridoid glycoside (CIG) on spinal cord injury (SCI) in rats. Methods. The thoracic cord (at T9) of rats was injured by clip compression for 30 sec. Locomotor function was assessed using the Basso, Beattie, and Bresnahan (BBB) rating scale....

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Wen-jing, Ma, Deng-lei, Yang, Cui-cui, Zhang, Li, Li, Ya-li, Zhang, Lan, Li, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5136393/
https://www.ncbi.nlm.nih.gov/pubmed/27990434
http://dx.doi.org/10.1155/2016/6725381
Descripción
Sumario:Purpose. This study was to investigate the effects of cornel iridoid glycoside (CIG) on spinal cord injury (SCI) in rats. Methods. The thoracic cord (at T9) of rats was injured by clip compression for 30 sec. Locomotor function was assessed using the Basso, Beattie, and Bresnahan (BBB) rating scale. Neuroanatomic stereological parameters as well as Nogo-A, p75 neurotrophin receptor (p75NTR), and ROCKII expression were measured by histological processing, immunohistochemistry, and stereological analyses. The axons passing through the lesion site were detected by BDA tracing. Results. Intragastric administration of CIG (60 and 180 mg/kg) improved the locomotor impairment at 10, 17, 24, and 31 days post-injury (dpi) compared with untreated SCI model rats. CIG treatment decreased the volume of the lesion epicenter (LEp) and increased the volume of spared tissue and the number of surviving neurons in the injured spinal cord at 31 dpi. CIG promoted the growth of BDA-positive axons and their passage through the lesion site and decreased the expression of Nogo-A, p75NTR, and ROCKII both in and around the LEp. Conclusion. CIG improved the locomotor impairment, decreased tissue damage, and downregulated the myelin-associated inhibition signaling pathway in SCI rats. The results suggest that CIG may be beneficial for SCI therapy.