Cargando…

Investigation of human body potential measured by a non-contact measuring system

A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. O...

Descripción completa

Detalles Bibliográficos
Autor principal: ICHIKAWA, Norimitsu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Occupational Safety and Health, Japan 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5136611/
https://www.ncbi.nlm.nih.gov/pubmed/27319403
http://dx.doi.org/10.2486/indhealth.2016-0008
Descripción
Sumario:A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body’s voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.