Cargando…

Revealing extraordinary tensile plasticity in layered Ti-Al metal composite

Layered Ti-Al metal composite (LMC) fabricated by hot-pressing and hot-rolling process displays higher ductility than that of both components. In this paper, a combination of digital image correlation (DIC) and X-ray tomography revealed that strain delocalization and constrained crack distribution a...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, M., Fan, G. H., Geng, L., Cao, G. J., Du, Y., Wu, H., Zhang, T. T., Kang, H. J., Wang, T. M., Du, G. H., Xie, H. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137039/
https://www.ncbi.nlm.nih.gov/pubmed/27917923
http://dx.doi.org/10.1038/srep38461
_version_ 1782471832158339072
author Huang, M.
Fan, G. H.
Geng, L.
Cao, G. J.
Du, Y.
Wu, H.
Zhang, T. T.
Kang, H. J.
Wang, T. M.
Du, G. H.
Xie, H. L.
author_facet Huang, M.
Fan, G. H.
Geng, L.
Cao, G. J.
Du, Y.
Wu, H.
Zhang, T. T.
Kang, H. J.
Wang, T. M.
Du, G. H.
Xie, H. L.
author_sort Huang, M.
collection PubMed
description Layered Ti-Al metal composite (LMC) fabricated by hot-pressing and hot-rolling process displays higher ductility than that of both components. In this paper, a combination of digital image correlation (DIC) and X-ray tomography revealed that strain delocalization and constrained crack distribution are the origin of extraordinary tensile ductility. Strain delocalization was derived from the transfer of strain partitioning between Ti and Al layer, which relieved effectively the strain localization of LMC. Furthermore, the extensive cracks of LMC were restricted in the interface due to constraint effect. Layered architecture constrained the distribution of cracks and significantly relieved the strain localization. Meanwhile, the transfer of strain partitioning and constrained crack distribution were believed to inhibit the strain localization of Ti and change the deformation mechanisms of Ti. Our finding enriches current understanding about simultaneously improving the strength and ductility by structural design.
format Online
Article
Text
id pubmed-5137039
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51370392017-01-27 Revealing extraordinary tensile plasticity in layered Ti-Al metal composite Huang, M. Fan, G. H. Geng, L. Cao, G. J. Du, Y. Wu, H. Zhang, T. T. Kang, H. J. Wang, T. M. Du, G. H. Xie, H. L. Sci Rep Article Layered Ti-Al metal composite (LMC) fabricated by hot-pressing and hot-rolling process displays higher ductility than that of both components. In this paper, a combination of digital image correlation (DIC) and X-ray tomography revealed that strain delocalization and constrained crack distribution are the origin of extraordinary tensile ductility. Strain delocalization was derived from the transfer of strain partitioning between Ti and Al layer, which relieved effectively the strain localization of LMC. Furthermore, the extensive cracks of LMC were restricted in the interface due to constraint effect. Layered architecture constrained the distribution of cracks and significantly relieved the strain localization. Meanwhile, the transfer of strain partitioning and constrained crack distribution were believed to inhibit the strain localization of Ti and change the deformation mechanisms of Ti. Our finding enriches current understanding about simultaneously improving the strength and ductility by structural design. Nature Publishing Group 2016-12-05 /pmc/articles/PMC5137039/ /pubmed/27917923 http://dx.doi.org/10.1038/srep38461 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Huang, M.
Fan, G. H.
Geng, L.
Cao, G. J.
Du, Y.
Wu, H.
Zhang, T. T.
Kang, H. J.
Wang, T. M.
Du, G. H.
Xie, H. L.
Revealing extraordinary tensile plasticity in layered Ti-Al metal composite
title Revealing extraordinary tensile plasticity in layered Ti-Al metal composite
title_full Revealing extraordinary tensile plasticity in layered Ti-Al metal composite
title_fullStr Revealing extraordinary tensile plasticity in layered Ti-Al metal composite
title_full_unstemmed Revealing extraordinary tensile plasticity in layered Ti-Al metal composite
title_short Revealing extraordinary tensile plasticity in layered Ti-Al metal composite
title_sort revealing extraordinary tensile plasticity in layered ti-al metal composite
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137039/
https://www.ncbi.nlm.nih.gov/pubmed/27917923
http://dx.doi.org/10.1038/srep38461
work_keys_str_mv AT huangm revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT fangh revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT gengl revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT caogj revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT duy revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT wuh revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT zhangtt revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT kanghj revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT wangtm revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT dugh revealingextraordinarytensileplasticityinlayeredtialmetalcomposite
AT xiehl revealingextraordinarytensileplasticityinlayeredtialmetalcomposite