Cargando…

Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells

Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Rank, Lisa, Veith, Sebastian, Gwosch, Eva C., Demgenski, Janine, Ganz, Magdalena, Jongmans, Marjolijn C., Vogel, Christopher, Fischbach, Arthur, Buerger, Stefanie, Fischer, Jan M.F., Zubel, Tabea, Stier, Anna, Renner, Christina, Schmalz, Michael, Beneke, Sascha, Groettrup, Marcus, Kuiper, Roland P., Bürkle, Alexander, Ferrando-May, Elisa, Mangerich, Aswin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137445/
https://www.ncbi.nlm.nih.gov/pubmed/27694308
http://dx.doi.org/10.1093/nar/gkw859
_version_ 1782471924231700480
author Rank, Lisa
Veith, Sebastian
Gwosch, Eva C.
Demgenski, Janine
Ganz, Magdalena
Jongmans, Marjolijn C.
Vogel, Christopher
Fischbach, Arthur
Buerger, Stefanie
Fischer, Jan M.F.
Zubel, Tabea
Stier, Anna
Renner, Christina
Schmalz, Michael
Beneke, Sascha
Groettrup, Marcus
Kuiper, Roland P.
Bürkle, Alexander
Ferrando-May, Elisa
Mangerich, Aswin
author_facet Rank, Lisa
Veith, Sebastian
Gwosch, Eva C.
Demgenski, Janine
Ganz, Magdalena
Jongmans, Marjolijn C.
Vogel, Christopher
Fischbach, Arthur
Buerger, Stefanie
Fischer, Jan M.F.
Zubel, Tabea
Stier, Anna
Renner, Christina
Schmalz, Michael
Beneke, Sascha
Groettrup, Marcus
Kuiper, Roland P.
Bürkle, Alexander
Ferrando-May, Elisa
Mangerich, Aswin
author_sort Rank, Lisa
collection PubMed
description Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\L713F expression triggered apoptosis, whereas PARP1\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants.
format Online
Article
Text
id pubmed-5137445
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-51374452016-12-06 Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells Rank, Lisa Veith, Sebastian Gwosch, Eva C. Demgenski, Janine Ganz, Magdalena Jongmans, Marjolijn C. Vogel, Christopher Fischbach, Arthur Buerger, Stefanie Fischer, Jan M.F. Zubel, Tabea Stier, Anna Renner, Christina Schmalz, Michael Beneke, Sascha Groettrup, Marcus Kuiper, Roland P. Bürkle, Alexander Ferrando-May, Elisa Mangerich, Aswin Nucleic Acids Res Nucleic Acid Enzymes Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\L713F expression triggered apoptosis, whereas PARP1\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants. Oxford University Press 2016-12-01 2016-09-29 /pmc/articles/PMC5137445/ /pubmed/27694308 http://dx.doi.org/10.1093/nar/gkw859 Text en © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Nucleic Acid Enzymes
Rank, Lisa
Veith, Sebastian
Gwosch, Eva C.
Demgenski, Janine
Ganz, Magdalena
Jongmans, Marjolijn C.
Vogel, Christopher
Fischbach, Arthur
Buerger, Stefanie
Fischer, Jan M.F.
Zubel, Tabea
Stier, Anna
Renner, Christina
Schmalz, Michael
Beneke, Sascha
Groettrup, Marcus
Kuiper, Roland P.
Bürkle, Alexander
Ferrando-May, Elisa
Mangerich, Aswin
Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells
title Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells
title_full Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells
title_fullStr Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells
title_full_unstemmed Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells
title_short Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells
title_sort analyzing structure–function relationships of artificial and cancer-associated parp1 variants by reconstituting talen-generated hela parp1 knock-out cells
topic Nucleic Acid Enzymes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137445/
https://www.ncbi.nlm.nih.gov/pubmed/27694308
http://dx.doi.org/10.1093/nar/gkw859
work_keys_str_mv AT ranklisa analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT veithsebastian analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT gwoschevac analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT demgenskijanine analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT ganzmagdalena analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT jongmansmarjolijnc analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT vogelchristopher analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT fischbacharthur analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT buergerstefanie analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT fischerjanmf analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT zubeltabea analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT stieranna analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT rennerchristina analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT schmalzmichael analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT benekesascha analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT groettrupmarcus analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT kuiperrolandp analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT burklealexander analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT ferrandomayelisa analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells
AT mangerichaswin analyzingstructurefunctionrelationshipsofartificialandcancerassociatedparp1variantsbyreconstitutingtalengeneratedhelaparp1knockoutcells