Cargando…

Abdominal functional electrical stimulation to enhance mechanical insufflation-exsufflation

CONTEXT: Respiratory complications, attributed to the build-up of secretions in the airway, are a leading cause of rehospitalisation for the tetraplegic population. Previously, we observed that the application of Abdominal Functional Electrical Stimulation (AFES) improved cough function and increase...

Descripción completa

Detalles Bibliográficos
Autores principales: McCaughey, Euan J., McLean, Alan N., Allan, David B., Gollee, Henrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137572/
https://www.ncbi.nlm.nih.gov/pubmed/26689243
http://dx.doi.org/10.1080/10790268.2015.1114226
Descripción
Sumario:CONTEXT: Respiratory complications, attributed to the build-up of secretions in the airway, are a leading cause of rehospitalisation for the tetraplegic population. Previously, we observed that the application of Abdominal Functional Electrical Stimulation (AFES) improved cough function and increased demand for secretion removal, suggesting AFES may aid secretion clearance. Clinically, secretion clearance is commonly achieved by using Mechanical insufflation-exsufflation (MI-E) to simulate a cough. In this study the feasibility of combining AFES with MI-E is evaluated. FINDINGS: AFES was successfully combined with MI-E at eight fortnightly assessment sessions conducted with one sub-acute participant with tetraplegia. By using the signal from a pressure sensor, integrated with the MI-E device, AFES was correctly applied in synchrony with MI-E with an accuracy of 96.7%. Acute increases in exhaled volume and peak flow were observed during AFES assisted MI-E, compared to MI-E alone, at six of eight assessment sessions. CONCLUSION: The successful integration of AFES with MI-E at eight assessment sessions demonstrates the feasibility of this technique. The acute increases in respiratory function observed at the majority of assessment sessions generate the hypothesis that AFES assisted MI-E may be more effective for secretion clearance than MI-E alone.