Cargando…
Photodynamic therapy and imaging based on tumor-targeted nanoprobe, polymer-conjugated zinc protoporphyrin
AIM: To evaluate the potential of tumor-targeted nanoprobe, N-(2-hydroxypropyl)methacrylamide copolymer-conjugated zinc protoporphyrin (PZP) for photodynamic therapy (PDT) and tumor imaging. MATERIALS & METHODS: Different tumor models including carcinogen-induced cancer were used, PZP was intrav...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Future Science Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137960/ https://www.ncbi.nlm.nih.gov/pubmed/28031879 http://dx.doi.org/10.4155/fso.15.2 |
Sumario: | AIM: To evaluate the potential of tumor-targeted nanoprobe, N-(2-hydroxypropyl)methacrylamide copolymer-conjugated zinc protoporphyrin (PZP) for photodynamic therapy (PDT) and tumor imaging. MATERIALS & METHODS: Different tumor models including carcinogen-induced cancer were used, PZP was intravenously injected followed by irradiation with xenon or blue fluorescent light on tumor. RESULTS: One PZP 20 mg/kg (ZnPP equivalent) dose with two or three treatments of light at an intensity of ≥20 J/cm(2) caused necrosis and disappearance of most tumors (>70%) in different tumor models. We also confirmed PZP-based tumor imaging in carcinogen-induced breast tumor and colon cancer models. CONCLUSION: These findings support the potential application of PZP as a tumor-selective nanoprobe for PDT as well as tumor imaging, by virtue of the enhanced permeability and retention effect. |
---|