Cargando…
Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies
Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying ind...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138056/ https://www.ncbi.nlm.nih.gov/pubmed/27942229 http://dx.doi.org/10.2147/TACG.S122250 |
_version_ | 1782472008158674944 |
---|---|
author | Rekaya, Romdhane Smith, Shannon Hay, El Hamidi Farhat, Nourhene Aggrey, Samuel E |
author_facet | Rekaya, Romdhane Smith, Shannon Hay, El Hamidi Farhat, Nourhene Aggrey, Samuel E |
author_sort | Rekaya, Romdhane |
collection | PubMed |
description | Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS). A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case–control) were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs) and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the proposed method. Additionally, truly misclassified binary records were identified with high probability using the proposed method. The superiority of the proposed method was maintained across different simulation parameters (misclassification rates and odds ratios) attesting to its robustness. |
format | Online Article Text |
id | pubmed-5138056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-51380562016-12-09 Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies Rekaya, Romdhane Smith, Shannon Hay, El Hamidi Farhat, Nourhene Aggrey, Samuel E Appl Clin Genet Original Research Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS). A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case–control) were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs) and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the proposed method. Additionally, truly misclassified binary records were identified with high probability using the proposed method. The superiority of the proposed method was maintained across different simulation parameters (misclassification rates and odds ratios) attesting to its robustness. Dove Medical Press 2016-11-30 /pmc/articles/PMC5138056/ /pubmed/27942229 http://dx.doi.org/10.2147/TACG.S122250 Text en © 2016 Rekaya et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Rekaya, Romdhane Smith, Shannon Hay, El Hamidi Farhat, Nourhene Aggrey, Samuel E Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies |
title | Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies |
title_full | Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies |
title_fullStr | Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies |
title_full_unstemmed | Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies |
title_short | Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies |
title_sort | analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138056/ https://www.ncbi.nlm.nih.gov/pubmed/27942229 http://dx.doi.org/10.2147/TACG.S122250 |
work_keys_str_mv | AT rekayaromdhane analysisofbinaryresponseswithoutcomespecificmisclassificationprobabilityingenomewideassociationstudies AT smithshannon analysisofbinaryresponseswithoutcomespecificmisclassificationprobabilityingenomewideassociationstudies AT hayelhamidi analysisofbinaryresponseswithoutcomespecificmisclassificationprobabilityingenomewideassociationstudies AT farhatnourhene analysisofbinaryresponseswithoutcomespecificmisclassificationprobabilityingenomewideassociationstudies AT aggreysamuele analysisofbinaryresponseswithoutcomespecificmisclassificationprobabilityingenomewideassociationstudies |