Cargando…
Convex Analysis of Mixtures for Separating Non-negative Well-grounded Sources
Blind Source Separation (BSS) is a powerful tool for analyzing composite data patterns in many areas, such as computational biology. We introduce a novel BSS method, Convex Analysis of Mixtures (CAM), for separating non-negative well-grounded sources, which learns the mixing matrix by identifying th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138607/ https://www.ncbi.nlm.nih.gov/pubmed/27922124 http://dx.doi.org/10.1038/srep38350 |
Sumario: | Blind Source Separation (BSS) is a powerful tool for analyzing composite data patterns in many areas, such as computational biology. We introduce a novel BSS method, Convex Analysis of Mixtures (CAM), for separating non-negative well-grounded sources, which learns the mixing matrix by identifying the lateral edges of the convex data scatter plot. We propose and prove a sufficient and necessary condition for identifying the mixing matrix through edge detection in the noise-free case, which enables CAM to identify the mixing matrix not only in the exact-determined and over-determined scenarios, but also in the under-determined scenario. We show the optimality of the edge detection strategy, even for cases where source well-groundedness is not strictly satisfied. The CAM algorithm integrates plug-in noise filtering using sector-based clustering, an efficient geometric convex analysis scheme, and stability-based model order selection. The superior performance of CAM against a panel of benchmark BSS techniques is demonstrated on numerically mixed gene expression data of ovarian cancer subtypes. We apply CAM to dissect dynamic contrast-enhanced magnetic resonance imaging data taken from breast tumors and time-course microarray gene expression data derived from in-vivo muscle regeneration in mice, both producing biologically plausible decomposition results. |
---|