Cargando…
Convex Analysis of Mixtures for Separating Non-negative Well-grounded Sources
Blind Source Separation (BSS) is a powerful tool for analyzing composite data patterns in many areas, such as computational biology. We introduce a novel BSS method, Convex Analysis of Mixtures (CAM), for separating non-negative well-grounded sources, which learns the mixing matrix by identifying th...
Autores principales: | Zhu, Yitan, Wang, Niya, Miller, David J., Wang, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138607/ https://www.ncbi.nlm.nih.gov/pubmed/27922124 http://dx.doi.org/10.1038/srep38350 |
Ejemplares similares
-
Symposium on Non-Well-Posed Problems and Logarithmic Convexity
por: Knops, R
Publicado: (1973) -
Convexity and well-posed problems
por: Lucchetti, Roberto
Publicado: (2006) -
Fundamentals of convex analysis: duality, separation, representation, and resolution
por: Panik, Michael J
Publicado: (1993) -
Temporal Unmixing of Dynamic Fluorescent Images by Blind Source Separation Method with a Convex Framework
por: Chen, Duofang, et al.
Publicado: (2015) -
Ground-State Properties and Phase Separation of Binary Mixtures in Mesoscopic Ring Lattices
por: Penna, Vittorio, et al.
Publicado: (2021)