Cargando…

Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server

Genomics Data Miner (GMine) is a user-friendly online software that allows non-experts to mine, cluster and compare multidimensional biomolecular datasets. Various powerful visualization techniques are provided, generating high quality figures that can be directly incorporated into scientific public...

Descripción completa

Detalles Bibliográficos
Autores principales: Proietti, Carla, Zakrzewski, Martha, Watkins, Thomas S., Berger, Bernard, Hasan, Shihab, Ratnatunga, Champa N., Brion, Marie-Jo, Crompton, Peter D., Miles, John J., Doolan, Denise L., Krause, Lutz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138638/
https://www.ncbi.nlm.nih.gov/pubmed/27922118
http://dx.doi.org/10.1038/srep38178
_version_ 1782472102747570176
author Proietti, Carla
Zakrzewski, Martha
Watkins, Thomas S.
Berger, Bernard
Hasan, Shihab
Ratnatunga, Champa N.
Brion, Marie-Jo
Crompton, Peter D.
Miles, John J.
Doolan, Denise L.
Krause, Lutz
author_facet Proietti, Carla
Zakrzewski, Martha
Watkins, Thomas S.
Berger, Bernard
Hasan, Shihab
Ratnatunga, Champa N.
Brion, Marie-Jo
Crompton, Peter D.
Miles, John J.
Doolan, Denise L.
Krause, Lutz
author_sort Proietti, Carla
collection PubMed
description Genomics Data Miner (GMine) is a user-friendly online software that allows non-experts to mine, cluster and compare multidimensional biomolecular datasets. Various powerful visualization techniques are provided, generating high quality figures that can be directly incorporated into scientific publications. Robust and comprehensive analyses are provided via a broad range of data-mining techniques, including univariate and multivariate statistical analysis, supervised learning, correlation networks, clustering and multivariable regression. The software has a focus on multivariate techniques, which can attribute variance in the measurements to multiple explanatory variables and confounders. Various normalization methods are provided. Extensive help pages and a tutorial are available via a wiki server. Using GMine we reanalyzed proteome microarray data of host antibody response against Plasmodium falciparum. Our results support the hypothesis that immunity to malaria is a higher-order phenomenon related to a pattern of responses and not attributable to any single antigen. We also analyzed gene expression across resting and activated T cells, identifying many immune-related genes with differential expression. This highlights both the plasticity of T cells and the operation of a hardwired activation program. These application examples demonstrate that GMine facilitates an accurate and in-depth analysis of complex molecular datasets, including genomics, transcriptomics and proteomics data.
format Online
Article
Text
id pubmed-5138638
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51386382016-12-16 Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server Proietti, Carla Zakrzewski, Martha Watkins, Thomas S. Berger, Bernard Hasan, Shihab Ratnatunga, Champa N. Brion, Marie-Jo Crompton, Peter D. Miles, John J. Doolan, Denise L. Krause, Lutz Sci Rep Article Genomics Data Miner (GMine) is a user-friendly online software that allows non-experts to mine, cluster and compare multidimensional biomolecular datasets. Various powerful visualization techniques are provided, generating high quality figures that can be directly incorporated into scientific publications. Robust and comprehensive analyses are provided via a broad range of data-mining techniques, including univariate and multivariate statistical analysis, supervised learning, correlation networks, clustering and multivariable regression. The software has a focus on multivariate techniques, which can attribute variance in the measurements to multiple explanatory variables and confounders. Various normalization methods are provided. Extensive help pages and a tutorial are available via a wiki server. Using GMine we reanalyzed proteome microarray data of host antibody response against Plasmodium falciparum. Our results support the hypothesis that immunity to malaria is a higher-order phenomenon related to a pattern of responses and not attributable to any single antigen. We also analyzed gene expression across resting and activated T cells, identifying many immune-related genes with differential expression. This highlights both the plasticity of T cells and the operation of a hardwired activation program. These application examples demonstrate that GMine facilitates an accurate and in-depth analysis of complex molecular datasets, including genomics, transcriptomics and proteomics data. Nature Publishing Group 2016-12-06 /pmc/articles/PMC5138638/ /pubmed/27922118 http://dx.doi.org/10.1038/srep38178 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Proietti, Carla
Zakrzewski, Martha
Watkins, Thomas S.
Berger, Bernard
Hasan, Shihab
Ratnatunga, Champa N.
Brion, Marie-Jo
Crompton, Peter D.
Miles, John J.
Doolan, Denise L.
Krause, Lutz
Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server
title Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server
title_full Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server
title_fullStr Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server
title_full_unstemmed Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server
title_short Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server
title_sort mining, visualizing and comparing multidimensional biomolecular data using the genomics data miner (gmine) web-server
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138638/
https://www.ncbi.nlm.nih.gov/pubmed/27922118
http://dx.doi.org/10.1038/srep38178
work_keys_str_mv AT proietticarla miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT zakrzewskimartha miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT watkinsthomass miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT bergerbernard miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT hasanshihab miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT ratnatungachampan miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT brionmariejo miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT cromptonpeterd miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT milesjohnj miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT doolandenisel miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver
AT krauselutz miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver