Cargando…
Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server
Genomics Data Miner (GMine) is a user-friendly online software that allows non-experts to mine, cluster and compare multidimensional biomolecular datasets. Various powerful visualization techniques are provided, generating high quality figures that can be directly incorporated into scientific public...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138638/ https://www.ncbi.nlm.nih.gov/pubmed/27922118 http://dx.doi.org/10.1038/srep38178 |
_version_ | 1782472102747570176 |
---|---|
author | Proietti, Carla Zakrzewski, Martha Watkins, Thomas S. Berger, Bernard Hasan, Shihab Ratnatunga, Champa N. Brion, Marie-Jo Crompton, Peter D. Miles, John J. Doolan, Denise L. Krause, Lutz |
author_facet | Proietti, Carla Zakrzewski, Martha Watkins, Thomas S. Berger, Bernard Hasan, Shihab Ratnatunga, Champa N. Brion, Marie-Jo Crompton, Peter D. Miles, John J. Doolan, Denise L. Krause, Lutz |
author_sort | Proietti, Carla |
collection | PubMed |
description | Genomics Data Miner (GMine) is a user-friendly online software that allows non-experts to mine, cluster and compare multidimensional biomolecular datasets. Various powerful visualization techniques are provided, generating high quality figures that can be directly incorporated into scientific publications. Robust and comprehensive analyses are provided via a broad range of data-mining techniques, including univariate and multivariate statistical analysis, supervised learning, correlation networks, clustering and multivariable regression. The software has a focus on multivariate techniques, which can attribute variance in the measurements to multiple explanatory variables and confounders. Various normalization methods are provided. Extensive help pages and a tutorial are available via a wiki server. Using GMine we reanalyzed proteome microarray data of host antibody response against Plasmodium falciparum. Our results support the hypothesis that immunity to malaria is a higher-order phenomenon related to a pattern of responses and not attributable to any single antigen. We also analyzed gene expression across resting and activated T cells, identifying many immune-related genes with differential expression. This highlights both the plasticity of T cells and the operation of a hardwired activation program. These application examples demonstrate that GMine facilitates an accurate and in-depth analysis of complex molecular datasets, including genomics, transcriptomics and proteomics data. |
format | Online Article Text |
id | pubmed-5138638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51386382016-12-16 Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server Proietti, Carla Zakrzewski, Martha Watkins, Thomas S. Berger, Bernard Hasan, Shihab Ratnatunga, Champa N. Brion, Marie-Jo Crompton, Peter D. Miles, John J. Doolan, Denise L. Krause, Lutz Sci Rep Article Genomics Data Miner (GMine) is a user-friendly online software that allows non-experts to mine, cluster and compare multidimensional biomolecular datasets. Various powerful visualization techniques are provided, generating high quality figures that can be directly incorporated into scientific publications. Robust and comprehensive analyses are provided via a broad range of data-mining techniques, including univariate and multivariate statistical analysis, supervised learning, correlation networks, clustering and multivariable regression. The software has a focus on multivariate techniques, which can attribute variance in the measurements to multiple explanatory variables and confounders. Various normalization methods are provided. Extensive help pages and a tutorial are available via a wiki server. Using GMine we reanalyzed proteome microarray data of host antibody response against Plasmodium falciparum. Our results support the hypothesis that immunity to malaria is a higher-order phenomenon related to a pattern of responses and not attributable to any single antigen. We also analyzed gene expression across resting and activated T cells, identifying many immune-related genes with differential expression. This highlights both the plasticity of T cells and the operation of a hardwired activation program. These application examples demonstrate that GMine facilitates an accurate and in-depth analysis of complex molecular datasets, including genomics, transcriptomics and proteomics data. Nature Publishing Group 2016-12-06 /pmc/articles/PMC5138638/ /pubmed/27922118 http://dx.doi.org/10.1038/srep38178 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Proietti, Carla Zakrzewski, Martha Watkins, Thomas S. Berger, Bernard Hasan, Shihab Ratnatunga, Champa N. Brion, Marie-Jo Crompton, Peter D. Miles, John J. Doolan, Denise L. Krause, Lutz Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server |
title | Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server |
title_full | Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server |
title_fullStr | Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server |
title_full_unstemmed | Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server |
title_short | Mining, visualizing and comparing multidimensional biomolecular data using the Genomics Data Miner (GMine) Web-Server |
title_sort | mining, visualizing and comparing multidimensional biomolecular data using the genomics data miner (gmine) web-server |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138638/ https://www.ncbi.nlm.nih.gov/pubmed/27922118 http://dx.doi.org/10.1038/srep38178 |
work_keys_str_mv | AT proietticarla miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT zakrzewskimartha miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT watkinsthomass miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT bergerbernard miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT hasanshihab miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT ratnatungachampan miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT brionmariejo miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT cromptonpeterd miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT milesjohnj miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT doolandenisel miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver AT krauselutz miningvisualizingandcomparingmultidimensionalbiomoleculardatausingthegenomicsdataminergminewebserver |