Cargando…
A carotenogenic mini-pathway introduced into white corn does not affect development or agronomic performance
High-carotenoid corn (Carolight®) has been developed as a vehicle to deliver pro-vitamin A in the diet and thus address vitamin A deficiency in at-risk populations in developing countries. Like any other novel crop, the performance of Carolight® must be tested in different environments to ensure tha...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138849/ https://www.ncbi.nlm.nih.gov/pubmed/27922071 http://dx.doi.org/10.1038/srep38288 |
Sumario: | High-carotenoid corn (Carolight®) has been developed as a vehicle to deliver pro-vitamin A in the diet and thus address vitamin A deficiency in at-risk populations in developing countries. Like any other novel crop, the performance of Carolight® must be tested in different environments to ensure that optimal yields and productivity are maintained, particularly in this case to ensure that the engineered metabolic pathway does not attract a yield penalty. Here we compared the performance of Carolight® with its near isogenic white corn inbred parental line under greenhouse and field conditions, and monitored the stability of the introduced trait. We found that Carolight® was indistinguishable from its near isogenic line in terms of agronomic performance, particularly grain yield and its main components. We also established experimentally that the functionality of the introduced trait was indistinguishable when plants were grown in a controlled environment or in the field. Such thorough characterization under different agronomic conditions is rarely performed even for first-generation traits such as herbicide tolerance and pest resistance, and certainly not for complex second-generation traits such as the metabolic remodeling in the Carolight® variety. Our results therefore indicate that Carolight® can now be incorporated into breeding lines to generate hybrids with locally adapted varieties for further product development and assessment. |
---|