Cargando…
DeepQA: improving the estimation of single protein model quality with deep belief networks
BACKGROUND: Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models...
Autores principales: | Cao, Renzhi, Bhattacharya, Debswapna, Hou, Jie, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139030/ https://www.ncbi.nlm.nih.gov/pubmed/27919220 http://dx.doi.org/10.1186/s12859-016-1405-y |
Ejemplares similares
-
Large-scale model quality assessment for improving protein tertiary structure prediction
por: Cao, Renzhi, et al.
Publicado: (2015) -
UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling
por: Bhattacharya, Debswapna, et al.
Publicado: (2016) -
QDeep: distance-based protein model quality estimation by residue-level ensemble error classifications using stacked deep residual neural networks
por: Shuvo, Md Hossain, et al.
Publicado: (2020) -
DeepRefiner: high-accuracy protein structure refinement by deep network calibration
por: Shuvo, Md Hossain, et al.
Publicado: (2021) -
PIQLE: protein-protein interface quality estimation by deep graph learning of multimeric interaction geometries
por: Shuvo, Md Hossain, et al.
Publicado: (2023)