Cargando…
High light stress triggers distinct proteomic responses in the marine diatom Thalassiosira pseudonana
BACKGROUND: Diatoms are able to acclimate to frequent and large light fluctuations in the surface ocean waters. However, the molecular mechanisms underlying these acclimation responses of diaotms remain elusive. RESULTS: In this study, we investigated the mechanism of high light protection in marine...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139114/ https://www.ncbi.nlm.nih.gov/pubmed/27919227 http://dx.doi.org/10.1186/s12864-016-3335-5 |
Sumario: | BACKGROUND: Diatoms are able to acclimate to frequent and large light fluctuations in the surface ocean waters. However, the molecular mechanisms underlying these acclimation responses of diaotms remain elusive. RESULTS: In this study, we investigated the mechanism of high light protection in marine diatom Thalassiosira pseudonana using comparative proteomics in combination with biochemical analyses. Cells treated under high light (800 μmol photons m(−2)s(−1)) for 10 h were subjected to proteomic analysis. We observed that 143 proteins were differentially expressed under high light treatment. Light-harvesting complex proteins, ROS scavenging systems, photorespiration, lipid metabolism and some specific proteins might be involved in light protection and acclimation of diatoms. Non-photochemical quenching (NPQ) and relative electron transport rate could respond rapidly to varying light intensities. High-light treatment also resulted in increased diadinoxanthin + diatoxanthin content, decreased Fv/Fm, increased triacylglycerol and altered fatty acid composition. Under HL stress, levels of C14:0 and C16:0 increased while C20:5ω3 decreased. CONCLUSIONS: We demonstrate that T. pseudonana has efficient photoprotective mechanisms to deal with HL stress. De novo synthesis of Ddx/Dtx and lipid accumulation contribute to utilization of the excess energy. Our data will provide new clues for in-depth study of photoprotective mechanisms in diatoms. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3335-5) contains supplementary material, which is available to authorized users. |
---|