Cargando…
Joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis
BACKGROUND: Joint models for longitudinal and time-to-event data are commonly used to simultaneously analyse correlated data in single study cases. Synthesis of evidence from multiple studies using meta-analysis is a natural next step but its feasibility depends heavily on the standard of reporting...
Autores principales: | Sudell, Maria, Kolamunnage-Dona, Ruwanthi, Tudur-Smith, Catrin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139124/ https://www.ncbi.nlm.nih.gov/pubmed/27919221 http://dx.doi.org/10.1186/s12874-016-0272-6 |
Ejemplares similares
-
Correction to: joint models for longitudinal and time-to-event data: a review of reporting quality with a view to meta-analysis
por: Sudell, Maria, et al.
Publicado: (2018) -
Investigation of 2‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application
por: Sudell, Maria, et al.
Publicado: (2017) -
Investigation of one‐stage meta‐analysis methods for joint longitudinal and time‐to‐event data through simulation and real data application
por: Sudell, Maria, et al.
Publicado: (2018) -
Bayesian joint modelling of longitudinal and time to event data: a methodological review
por: Alsefri, Maha, et al.
Publicado: (2020) -
Sample size formula for joint modelling of longitudinal and time-to-event data in clinical trials
por: Powney, Matthew, et al.
Publicado: (2013)