Cargando…
Frequency‐dependent two‐sex models: a new approach to sex ratio evolution with multiple maternal conditions
Mothers that experience different individual or environmental conditions may produce different proportions of male to female offspring. The Trivers‐Willard hypothesis, for instance, suggests that mothers with different qualities (size, health, etc.) will use different sex ratios if maternal quality...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139946/ https://www.ncbi.nlm.nih.gov/pubmed/27980727 http://dx.doi.org/10.1002/ece3.2202 |
_version_ | 1782472336392323072 |
---|---|
author | Shyu, Esther Caswell, Hal |
author_facet | Shyu, Esther Caswell, Hal |
author_sort | Shyu, Esther |
collection | PubMed |
description | Mothers that experience different individual or environmental conditions may produce different proportions of male to female offspring. The Trivers‐Willard hypothesis, for instance, suggests that mothers with different qualities (size, health, etc.) will use different sex ratios if maternal quality differentially affects sex‐specific reproductive success. Condition‐dependent, or facultative, sex ratio strategies like these allow multiple sex ratios to coexist within a population. They also create complex population structure due to the presence of multiple maternal conditions. As a result, modeling facultative sex ratio evolution requires not only sex ratio strategies with multiple components, but also two‐sex population models with explicit stage structure. To this end, we combine nonlinear, frequency‐dependent matrix models and multidimensional adaptive dynamics to create a new framework for studying sex ratio evolution. We illustrate the applications of this framework with two case studies where the sex ratios depend one of two possible maternal conditions (age or quality). In these cases, we identify evolutionarily singular sex ratio strategies, find instances where one maternal condition produces exclusively male or female offspring, and show that sex ratio biases depend on the relative reproductive value ratios for each sex. |
format | Online Article Text |
id | pubmed-5139946 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-51399462016-12-15 Frequency‐dependent two‐sex models: a new approach to sex ratio evolution with multiple maternal conditions Shyu, Esther Caswell, Hal Ecol Evol Original Research Mothers that experience different individual or environmental conditions may produce different proportions of male to female offspring. The Trivers‐Willard hypothesis, for instance, suggests that mothers with different qualities (size, health, etc.) will use different sex ratios if maternal quality differentially affects sex‐specific reproductive success. Condition‐dependent, or facultative, sex ratio strategies like these allow multiple sex ratios to coexist within a population. They also create complex population structure due to the presence of multiple maternal conditions. As a result, modeling facultative sex ratio evolution requires not only sex ratio strategies with multiple components, but also two‐sex population models with explicit stage structure. To this end, we combine nonlinear, frequency‐dependent matrix models and multidimensional adaptive dynamics to create a new framework for studying sex ratio evolution. We illustrate the applications of this framework with two case studies where the sex ratios depend one of two possible maternal conditions (age or quality). In these cases, we identify evolutionarily singular sex ratio strategies, find instances where one maternal condition produces exclusively male or female offspring, and show that sex ratio biases depend on the relative reproductive value ratios for each sex. John Wiley and Sons Inc. 2016-09-07 /pmc/articles/PMC5139946/ /pubmed/27980727 http://dx.doi.org/10.1002/ece3.2202 Text en © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Shyu, Esther Caswell, Hal Frequency‐dependent two‐sex models: a new approach to sex ratio evolution with multiple maternal conditions |
title | Frequency‐dependent two‐sex models: a new approach to sex ratio evolution with multiple maternal conditions |
title_full | Frequency‐dependent two‐sex models: a new approach to sex ratio evolution with multiple maternal conditions |
title_fullStr | Frequency‐dependent two‐sex models: a new approach to sex ratio evolution with multiple maternal conditions |
title_full_unstemmed | Frequency‐dependent two‐sex models: a new approach to sex ratio evolution with multiple maternal conditions |
title_short | Frequency‐dependent two‐sex models: a new approach to sex ratio evolution with multiple maternal conditions |
title_sort | frequency‐dependent two‐sex models: a new approach to sex ratio evolution with multiple maternal conditions |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139946/ https://www.ncbi.nlm.nih.gov/pubmed/27980727 http://dx.doi.org/10.1002/ece3.2202 |
work_keys_str_mv | AT shyuesther frequencydependenttwosexmodelsanewapproachtosexratioevolutionwithmultiplematernalconditions AT caswellhal frequencydependenttwosexmodelsanewapproachtosexratioevolutionwithmultiplematernalconditions |