Cargando…

Nondestructive Method for Mapping Metal Contact Diffusion in In(2)O(3) Thin-Film Transistors

[Image: see text] The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and...

Descripción completa

Detalles Bibliográficos
Autores principales: Kryvchenkova, Olga, Abdullah, Isam, Macdonald, John Emyr, Elliott, Martin, Anthopoulos, Thomas D., Lin, Yen-Hung, Igić, Petar, Kalna, Karol, Cobley, Richard J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5140079/
https://www.ncbi.nlm.nih.gov/pubmed/27581104
http://dx.doi.org/10.1021/acsami.6b10332
_version_ 1782472362621403136
author Kryvchenkova, Olga
Abdullah, Isam
Macdonald, John Emyr
Elliott, Martin
Anthopoulos, Thomas D.
Lin, Yen-Hung
Igić, Petar
Kalna, Karol
Cobley, Richard J.
author_facet Kryvchenkova, Olga
Abdullah, Isam
Macdonald, John Emyr
Elliott, Martin
Anthopoulos, Thomas D.
Lin, Yen-Hung
Igić, Petar
Kalna, Karol
Cobley, Richard J.
author_sort Kryvchenkova, Olga
collection PubMed
description [Image: see text] The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy.
format Online
Article
Text
id pubmed-5140079
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-51400792016-12-09 Nondestructive Method for Mapping Metal Contact Diffusion in In(2)O(3) Thin-Film Transistors Kryvchenkova, Olga Abdullah, Isam Macdonald, John Emyr Elliott, Martin Anthopoulos, Thomas D. Lin, Yen-Hung Igić, Petar Kalna, Karol Cobley, Richard J. ACS Appl Mater Interfaces [Image: see text] The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy. American Chemical Society 2016-09-01 2016-09-28 /pmc/articles/PMC5140079/ /pubmed/27581104 http://dx.doi.org/10.1021/acsami.6b10332 Text en Copyright © 2016 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Kryvchenkova, Olga
Abdullah, Isam
Macdonald, John Emyr
Elliott, Martin
Anthopoulos, Thomas D.
Lin, Yen-Hung
Igić, Petar
Kalna, Karol
Cobley, Richard J.
Nondestructive Method for Mapping Metal Contact Diffusion in In(2)O(3) Thin-Film Transistors
title Nondestructive Method for Mapping Metal Contact Diffusion in In(2)O(3) Thin-Film Transistors
title_full Nondestructive Method for Mapping Metal Contact Diffusion in In(2)O(3) Thin-Film Transistors
title_fullStr Nondestructive Method for Mapping Metal Contact Diffusion in In(2)O(3) Thin-Film Transistors
title_full_unstemmed Nondestructive Method for Mapping Metal Contact Diffusion in In(2)O(3) Thin-Film Transistors
title_short Nondestructive Method for Mapping Metal Contact Diffusion in In(2)O(3) Thin-Film Transistors
title_sort nondestructive method for mapping metal contact diffusion in in(2)o(3) thin-film transistors
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5140079/
https://www.ncbi.nlm.nih.gov/pubmed/27581104
http://dx.doi.org/10.1021/acsami.6b10332
work_keys_str_mv AT kryvchenkovaolga nondestructivemethodformappingmetalcontactdiffusioninin2o3thinfilmtransistors
AT abdullahisam nondestructivemethodformappingmetalcontactdiffusioninin2o3thinfilmtransistors
AT macdonaldjohnemyr nondestructivemethodformappingmetalcontactdiffusioninin2o3thinfilmtransistors
AT elliottmartin nondestructivemethodformappingmetalcontactdiffusioninin2o3thinfilmtransistors
AT anthopoulosthomasd nondestructivemethodformappingmetalcontactdiffusioninin2o3thinfilmtransistors
AT linyenhung nondestructivemethodformappingmetalcontactdiffusioninin2o3thinfilmtransistors
AT igicpetar nondestructivemethodformappingmetalcontactdiffusioninin2o3thinfilmtransistors
AT kalnakarol nondestructivemethodformappingmetalcontactdiffusioninin2o3thinfilmtransistors
AT cobleyrichardj nondestructivemethodformappingmetalcontactdiffusioninin2o3thinfilmtransistors