Cargando…
Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53
Invasive growth and apoptosis resistance of breast cancer cells are associated with metastasis and disease relapse. Here we identified that the lysine-specific demethylase KDM3A played a dual role in breast cancer cell invasion and apoptosis by demethylating histone and the non-histone protein p53,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5140781/ https://www.ncbi.nlm.nih.gov/pubmed/27270439 http://dx.doi.org/10.1038/onc.2016.174 |
Sumario: | Invasive growth and apoptosis resistance of breast cancer cells are associated with metastasis and disease relapse. Here we identified that the lysine-specific demethylase KDM3A played a dual role in breast cancer cell invasion and apoptosis by demethylating histone and the non-histone protein p53, respectively. While inducing pro-invasive genes by erasing repressive histone H3 lysine 9 methylation, KDM3A promotes chemoresistance by demethylating p53. KDM3A suppressed pro-apoptotic functions of p53 by erasing p53-K372me1 as this methylation site is crucial for the stability of chromatin-bound p53. Unexpectedly, depletion of KDM3A was capable of reactivating mutated p53 to induce the expression of pro-apoptotic genes in breast cancer with mutant p53. Moreover, KDM3A knockdown also potently inhibited tumorigenic potentials of breast cancer stem-like cells and rendered them sensitive to apoptosis induced by chemotherapeutic drugs. Taken together, our results suggest that KDM3A might be a potential therapeutic target for human breast cancer treatment and prevention. |
---|