Cargando…
Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5141382/ https://www.ncbi.nlm.nih.gov/pubmed/27901024 http://dx.doi.org/10.1038/ncomms13672 |
_version_ | 1782472602574389248 |
---|---|
author | Zydziak, Nicolas Konrad, Waldemar Feist, Florian Afonin, Sergii Weidner, Steffen Barner-Kowollik, Christopher |
author_facet | Zydziak, Nicolas Konrad, Waldemar Feist, Florian Afonin, Sergii Weidner, Steffen Barner-Kowollik, Christopher |
author_sort | Zydziak, Nicolas |
collection | PubMed |
description | Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. |
format | Online Article Text |
id | pubmed-5141382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51413822016-12-13 Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation Zydziak, Nicolas Konrad, Waldemar Feist, Florian Afonin, Sergii Weidner, Steffen Barner-Kowollik, Christopher Nat Commun Article Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. Nature Publishing Group 2016-11-30 /pmc/articles/PMC5141382/ /pubmed/27901024 http://dx.doi.org/10.1038/ncomms13672 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Zydziak, Nicolas Konrad, Waldemar Feist, Florian Afonin, Sergii Weidner, Steffen Barner-Kowollik, Christopher Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation |
title | Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation |
title_full | Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation |
title_fullStr | Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation |
title_full_unstemmed | Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation |
title_short | Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation |
title_sort | coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5141382/ https://www.ncbi.nlm.nih.gov/pubmed/27901024 http://dx.doi.org/10.1038/ncomms13672 |
work_keys_str_mv | AT zydziaknicolas codinganddecodinglibrariesofsequencedefinedfunctionalcopolymerssynthesizedviaphotoligation AT konradwaldemar codinganddecodinglibrariesofsequencedefinedfunctionalcopolymerssynthesizedviaphotoligation AT feistflorian codinganddecodinglibrariesofsequencedefinedfunctionalcopolymerssynthesizedviaphotoligation AT afoninsergii codinganddecodinglibrariesofsequencedefinedfunctionalcopolymerssynthesizedviaphotoligation AT weidnersteffen codinganddecodinglibrariesofsequencedefinedfunctionalcopolymerssynthesizedviaphotoligation AT barnerkowollikchristopher codinganddecodinglibrariesofsequencedefinedfunctionalcopolymerssynthesizedviaphotoligation |