Cargando…

Arctic lakes show strong decadal trend in earlier spring ice-out

The timing of the seasonal freeze-thaw cycle of arctic lakes affects ecological processes and land-atmosphere energy fluxes. We carried out detailed ice-phenology mapping of arctic lakes, based on daily surface-reflectance time series for 2000–2013 from MODIS at 250 m spatial resolution. We used ove...

Descripción completa

Detalles Bibliográficos
Autores principales: Šmejkalová, Tereza, Edwards, Mary E., Dash, Jadunandan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5141450/
https://www.ncbi.nlm.nih.gov/pubmed/27924914
http://dx.doi.org/10.1038/srep38449
Descripción
Sumario:The timing of the seasonal freeze-thaw cycle of arctic lakes affects ecological processes and land-atmosphere energy fluxes. We carried out detailed ice-phenology mapping of arctic lakes, based on daily surface-reflectance time series for 2000–2013 from MODIS at 250 m spatial resolution. We used over 13,300 lakes, area >1 km(2), in five study areas distributed evenly across the circumpolar Arctic — the first such phenological dataset. All areas showed significant trends towards an earlier break-up, stronger than previously reported. The mean shift in break-up start ranged from −0.10 days/year (Northern Europe) to −1.05 days/year (central Siberia); the shift in break-up end was between −0.14 and −0.72 days/year. Finally, we explored the effect of temperature on break-up timing and compared results among study areas. The 0 °C isotherm shows the strongest relationship (r = 0.56–0.81) in all study areas. If the trend in early break-up continues, rapidly changing ice phenology will likely generate significant, arctic-wide impacts.