Cargando…
Arctic lakes show strong decadal trend in earlier spring ice-out
The timing of the seasonal freeze-thaw cycle of arctic lakes affects ecological processes and land-atmosphere energy fluxes. We carried out detailed ice-phenology mapping of arctic lakes, based on daily surface-reflectance time series for 2000–2013 from MODIS at 250 m spatial resolution. We used ove...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5141450/ https://www.ncbi.nlm.nih.gov/pubmed/27924914 http://dx.doi.org/10.1038/srep38449 |
Sumario: | The timing of the seasonal freeze-thaw cycle of arctic lakes affects ecological processes and land-atmosphere energy fluxes. We carried out detailed ice-phenology mapping of arctic lakes, based on daily surface-reflectance time series for 2000–2013 from MODIS at 250 m spatial resolution. We used over 13,300 lakes, area >1 km(2), in five study areas distributed evenly across the circumpolar Arctic — the first such phenological dataset. All areas showed significant trends towards an earlier break-up, stronger than previously reported. The mean shift in break-up start ranged from −0.10 days/year (Northern Europe) to −1.05 days/year (central Siberia); the shift in break-up end was between −0.14 and −0.72 days/year. Finally, we explored the effect of temperature on break-up timing and compared results among study areas. The 0 °C isotherm shows the strongest relationship (r = 0.56–0.81) in all study areas. If the trend in early break-up continues, rapidly changing ice phenology will likely generate significant, arctic-wide impacts. |
---|