Cargando…

Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness

AIM: To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). METHODS: Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP)...

Descripción completa

Detalles Bibliográficos
Autores principales: Marović, Danijela, Šariri, Kristina, Demoli, Nazif, Ristić, Mira, Hiller, Karl-Anton, Škrtić, Drago, Rosentritt, Martin, Schmalz, Gottfried, Tarle, Zrinka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Croatian Medical Schools 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5141456/
https://www.ncbi.nlm.nih.gov/pubmed/27815937
http://dx.doi.org/10.3325/cmj.2016.57.465
Descripción
Sumario:AIM: To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). METHODS: Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP), with 10% of barium-glass fillers (Ba-ACP), and with 10% of silica fillers (Si-ACP), as well as commercial control (Ceram•X, Dentsply DeTrey) were tested in laboratory conditions. The amount of ACP (40%) and the composition of the resin mixture (based on ethoxylated bisphenol A dimethacrylate) was the same for all ACP materials. Fourier transform infrared spectroscopy was used to determine the DC (n = 40), 20 min and 72 h after polymerization. Linear PS and Vickers microhardness (n = 40) were also evaluated. The results were analyzed by paired samples t test, ANOVA, and one-way repeated measures ANOVA with Student-Newman-Keuls or Tukey’s post-hoc test (P = 0.05). RESULTS: The addition of barium fillers significantly increased the DC (20 min) (75.84 ± 0.62%) in comparison to 0-ACP (73.92 ± 3.08%), but the addition of silica fillers lowered the DC (71.00 ± 0.57%). Ceram•X had the lowest DC (54.93 ± 1.00%) and linear PS (1.01 ± 0.24%) but the highest HV (20.73 ± 2.09). PS was significantly reduced (P < 0.010) in both Ba-ACP (1.13 ± 0.25%) and Si-ACP (1.17 ± 0.19%) compared to 0-ACP (1.43 ± 0.21%). HV was significantly higher in Si-ACP (12.82 ± 1.30) than in 0-ACP (10.54 ± 0.86) and Ba-ACP (10.75 ± 0.62) (P < 0.010). CONCLUSION: Incorporation of inert fillers to bioactive remineralizing composites enhanced their physical-mechanical performance in laboratory conditions. Both added fillers reduced the PS while maintaining high levels of the DC. Silica fillers additionally moderately improved the HV of ACP composites.