Cargando…

PCAN: phenotype consensus analysis to support disease-gene association

BACKGROUND: Bridging genotype and phenotype is a fundamental biomedical challenge that underlies more effective target discovery and patient-tailored therapy. Approaches that can flexibly and intuitively, integrate known gene-phenotype associations in the context of molecular signaling networks are...

Descripción completa

Detalles Bibliográficos
Autores principales: Godard, Patrice, Page, Matthew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142268/
https://www.ncbi.nlm.nih.gov/pubmed/27923364
http://dx.doi.org/10.1186/s12859-016-1401-2
Descripción
Sumario:BACKGROUND: Bridging genotype and phenotype is a fundamental biomedical challenge that underlies more effective target discovery and patient-tailored therapy. Approaches that can flexibly and intuitively, integrate known gene-phenotype associations in the context of molecular signaling networks are vital to effectively prioritize and biologically interpret genes underlying disease traits of interest. RESULTS: We describe Phenotype Consensus Analysis (PCAN); a method to assess the consensus semantic similarity of phenotypes in a candidate gene’s signaling neighborhood. We demonstrate that significant phenotype consensus (p < 0.05) is observable for ~67% of 4,549 OMIM disease-gene associations, using a combination of high quality String interactions + Metabase pathways and use Joubert Syndrome to demonstrate the ease with which a significant result can be interrogated to highlight discriminatory traits linked to mechanistically related genes. CONCLUSIONS: We advocate phenotype consensus as an intuitive and versatile method to aid disease-gene association, which naturally lends itself to the mechanistic deconvolution of diverse phenotypes. We provide PCAN to the community as an R package (http://bioconductor.org/packages/PCAN/) to allow flexible configuration, extension and standalone use or integration to supplement existing gene prioritization workflows. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1401-2) contains supplementary material, which is available to authorized users.