Cargando…

Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders

BACKGROUND: Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computation...

Descripción completa

Detalles Bibliográficos
Autores principales: van Eunen, Karen, Volker-Touw, Catharina M. L., Gerding, Albert, Bleeker, Aycha, Wolters, Justina C., van Rijt, Willemijn J., Martines, Anne-Claire M. F., Niezen-Koning, Klary E., Heiner, Rebecca M., Permentier, Hjalmar, Groen, Albert K., Reijngoud, Dirk-Jan, Derks, Terry G. J., Bakker, Barbara M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142382/
https://www.ncbi.nlm.nih.gov/pubmed/27927213
http://dx.doi.org/10.1186/s12915-016-0327-5
_version_ 1782472764214476800
author van Eunen, Karen
Volker-Touw, Catharina M. L.
Gerding, Albert
Bleeker, Aycha
Wolters, Justina C.
van Rijt, Willemijn J.
Martines, Anne-Claire M. F.
Niezen-Koning, Klary E.
Heiner, Rebecca M.
Permentier, Hjalmar
Groen, Albert K.
Reijngoud, Dirk-Jan
Derks, Terry G. J.
Bakker, Barbara M.
author_facet van Eunen, Karen
Volker-Touw, Catharina M. L.
Gerding, Albert
Bleeker, Aycha
Wolters, Justina C.
van Rijt, Willemijn J.
Martines, Anne-Claire M. F.
Niezen-Koning, Klary E.
Heiner, Rebecca M.
Permentier, Hjalmar
Groen, Albert K.
Reijngoud, Dirk-Jan
Derks, Terry G. J.
Bakker, Barbara M.
author_sort van Eunen, Karen
collection PubMed
description BACKGROUND: Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computational modeling with quantitative mouse and patient data to investigate whether substrate competition affects pathway robustness in mFAO disorders. RESULTS: First, we used comprehensive biochemical analyses of wild-type mice and mice deficient for medium-chain acyl-CoA dehydrogenase (MCAD) to parameterize a detailed computational model of mFAO. Model simulations predicted that MCAD deficiency would have no effect on the pathway flux at low concentrations of the mFAO substrate palmitoyl-CoA. However, high concentrations of palmitoyl-CoA would induce a decline in flux and an accumulation of intermediate metabolites. We proved computationally that the predicted overload behavior was due to substrate competition in the pathway. Second, to study the clinical relevance of this mechanism, we used patients’ metabolite profiles and generated a humanized version of the computational model. While molecular competition did not affect the plasma metabolite profiles during MCAD deficiency, it was a key factor in explaining the characteristic acylcarnitine profiles of multiple acyl-CoA dehydrogenase deficient patients. The patient-specific computational models allowed us to predict the severity of the disease phenotype, providing a proof of principle for the systems medicine approach. CONCLUSION: We conclude that substrate competition is at the basis of the physiology seen in patients with mFAO disorders, a finding that may explain why these patients run a risk of a life-threatening metabolic catastrophe. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-016-0327-5) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5142382
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-51423822016-12-15 Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders van Eunen, Karen Volker-Touw, Catharina M. L. Gerding, Albert Bleeker, Aycha Wolters, Justina C. van Rijt, Willemijn J. Martines, Anne-Claire M. F. Niezen-Koning, Klary E. Heiner, Rebecca M. Permentier, Hjalmar Groen, Albert K. Reijngoud, Dirk-Jan Derks, Terry G. J. Bakker, Barbara M. BMC Biol Research Article BACKGROUND: Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computational modeling with quantitative mouse and patient data to investigate whether substrate competition affects pathway robustness in mFAO disorders. RESULTS: First, we used comprehensive biochemical analyses of wild-type mice and mice deficient for medium-chain acyl-CoA dehydrogenase (MCAD) to parameterize a detailed computational model of mFAO. Model simulations predicted that MCAD deficiency would have no effect on the pathway flux at low concentrations of the mFAO substrate palmitoyl-CoA. However, high concentrations of palmitoyl-CoA would induce a decline in flux and an accumulation of intermediate metabolites. We proved computationally that the predicted overload behavior was due to substrate competition in the pathway. Second, to study the clinical relevance of this mechanism, we used patients’ metabolite profiles and generated a humanized version of the computational model. While molecular competition did not affect the plasma metabolite profiles during MCAD deficiency, it was a key factor in explaining the characteristic acylcarnitine profiles of multiple acyl-CoA dehydrogenase deficient patients. The patient-specific computational models allowed us to predict the severity of the disease phenotype, providing a proof of principle for the systems medicine approach. CONCLUSION: We conclude that substrate competition is at the basis of the physiology seen in patients with mFAO disorders, a finding that may explain why these patients run a risk of a life-threatening metabolic catastrophe. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-016-0327-5) contains supplementary material, which is available to authorized users. BioMed Central 2016-12-07 /pmc/articles/PMC5142382/ /pubmed/27927213 http://dx.doi.org/10.1186/s12915-016-0327-5 Text en © Bakker et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
van Eunen, Karen
Volker-Touw, Catharina M. L.
Gerding, Albert
Bleeker, Aycha
Wolters, Justina C.
van Rijt, Willemijn J.
Martines, Anne-Claire M. F.
Niezen-Koning, Klary E.
Heiner, Rebecca M.
Permentier, Hjalmar
Groen, Albert K.
Reijngoud, Dirk-Jan
Derks, Terry G. J.
Bakker, Barbara M.
Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders
title Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders
title_full Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders
title_fullStr Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders
title_full_unstemmed Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders
title_short Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders
title_sort living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142382/
https://www.ncbi.nlm.nih.gov/pubmed/27927213
http://dx.doi.org/10.1186/s12915-016-0327-5
work_keys_str_mv AT vaneunenkaren livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT volkertouwcatharinaml livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT gerdingalbert livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT bleekeraycha livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT woltersjustinac livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT vanrijtwillemijnj livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT martinesanneclairemf livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT niezenkoningklarye livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT heinerrebeccam livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT permentierhjalmar livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT groenalbertk livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT reijngouddirkjan livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT derksterrygj livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders
AT bakkerbarbaram livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders