Cargando…
Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders
BACKGROUND: Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computation...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142382/ https://www.ncbi.nlm.nih.gov/pubmed/27927213 http://dx.doi.org/10.1186/s12915-016-0327-5 |
_version_ | 1782472764214476800 |
---|---|
author | van Eunen, Karen Volker-Touw, Catharina M. L. Gerding, Albert Bleeker, Aycha Wolters, Justina C. van Rijt, Willemijn J. Martines, Anne-Claire M. F. Niezen-Koning, Klary E. Heiner, Rebecca M. Permentier, Hjalmar Groen, Albert K. Reijngoud, Dirk-Jan Derks, Terry G. J. Bakker, Barbara M. |
author_facet | van Eunen, Karen Volker-Touw, Catharina M. L. Gerding, Albert Bleeker, Aycha Wolters, Justina C. van Rijt, Willemijn J. Martines, Anne-Claire M. F. Niezen-Koning, Klary E. Heiner, Rebecca M. Permentier, Hjalmar Groen, Albert K. Reijngoud, Dirk-Jan Derks, Terry G. J. Bakker, Barbara M. |
author_sort | van Eunen, Karen |
collection | PubMed |
description | BACKGROUND: Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computational modeling with quantitative mouse and patient data to investigate whether substrate competition affects pathway robustness in mFAO disorders. RESULTS: First, we used comprehensive biochemical analyses of wild-type mice and mice deficient for medium-chain acyl-CoA dehydrogenase (MCAD) to parameterize a detailed computational model of mFAO. Model simulations predicted that MCAD deficiency would have no effect on the pathway flux at low concentrations of the mFAO substrate palmitoyl-CoA. However, high concentrations of palmitoyl-CoA would induce a decline in flux and an accumulation of intermediate metabolites. We proved computationally that the predicted overload behavior was due to substrate competition in the pathway. Second, to study the clinical relevance of this mechanism, we used patients’ metabolite profiles and generated a humanized version of the computational model. While molecular competition did not affect the plasma metabolite profiles during MCAD deficiency, it was a key factor in explaining the characteristic acylcarnitine profiles of multiple acyl-CoA dehydrogenase deficient patients. The patient-specific computational models allowed us to predict the severity of the disease phenotype, providing a proof of principle for the systems medicine approach. CONCLUSION: We conclude that substrate competition is at the basis of the physiology seen in patients with mFAO disorders, a finding that may explain why these patients run a risk of a life-threatening metabolic catastrophe. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-016-0327-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5142382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-51423822016-12-15 Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders van Eunen, Karen Volker-Touw, Catharina M. L. Gerding, Albert Bleeker, Aycha Wolters, Justina C. van Rijt, Willemijn J. Martines, Anne-Claire M. F. Niezen-Koning, Klary E. Heiner, Rebecca M. Permentier, Hjalmar Groen, Albert K. Reijngoud, Dirk-Jan Derks, Terry G. J. Bakker, Barbara M. BMC Biol Research Article BACKGROUND: Defects in genes involved in mitochondrial fatty-acid oxidation (mFAO) reduce the ability of patients to cope with metabolic challenges. mFAO enzymes accept multiple substrates of different chain length, leading to molecular competition among the substrates. Here, we combined computational modeling with quantitative mouse and patient data to investigate whether substrate competition affects pathway robustness in mFAO disorders. RESULTS: First, we used comprehensive biochemical analyses of wild-type mice and mice deficient for medium-chain acyl-CoA dehydrogenase (MCAD) to parameterize a detailed computational model of mFAO. Model simulations predicted that MCAD deficiency would have no effect on the pathway flux at low concentrations of the mFAO substrate palmitoyl-CoA. However, high concentrations of palmitoyl-CoA would induce a decline in flux and an accumulation of intermediate metabolites. We proved computationally that the predicted overload behavior was due to substrate competition in the pathway. Second, to study the clinical relevance of this mechanism, we used patients’ metabolite profiles and generated a humanized version of the computational model. While molecular competition did not affect the plasma metabolite profiles during MCAD deficiency, it was a key factor in explaining the characteristic acylcarnitine profiles of multiple acyl-CoA dehydrogenase deficient patients. The patient-specific computational models allowed us to predict the severity of the disease phenotype, providing a proof of principle for the systems medicine approach. CONCLUSION: We conclude that substrate competition is at the basis of the physiology seen in patients with mFAO disorders, a finding that may explain why these patients run a risk of a life-threatening metabolic catastrophe. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-016-0327-5) contains supplementary material, which is available to authorized users. BioMed Central 2016-12-07 /pmc/articles/PMC5142382/ /pubmed/27927213 http://dx.doi.org/10.1186/s12915-016-0327-5 Text en © Bakker et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article van Eunen, Karen Volker-Touw, Catharina M. L. Gerding, Albert Bleeker, Aycha Wolters, Justina C. van Rijt, Willemijn J. Martines, Anne-Claire M. F. Niezen-Koning, Klary E. Heiner, Rebecca M. Permentier, Hjalmar Groen, Albert K. Reijngoud, Dirk-Jan Derks, Terry G. J. Bakker, Barbara M. Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders |
title | Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders |
title_full | Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders |
title_fullStr | Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders |
title_full_unstemmed | Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders |
title_short | Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders |
title_sort | living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142382/ https://www.ncbi.nlm.nih.gov/pubmed/27927213 http://dx.doi.org/10.1186/s12915-016-0327-5 |
work_keys_str_mv | AT vaneunenkaren livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT volkertouwcatharinaml livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT gerdingalbert livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT bleekeraycha livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT woltersjustinac livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT vanrijtwillemijnj livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT martinesanneclairemf livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT niezenkoningklarye livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT heinerrebeccam livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT permentierhjalmar livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT groenalbertk livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT reijngouddirkjan livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT derksterrygj livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders AT bakkerbarbaram livingontheedgesubstratecompetitionexplainslossofrobustnessinmitochondrialfattyacidoxidationdisorders |