Cargando…
Frequency and distribution patterns of opportunistic infections associated with HIV/AIDS in Uganda
BACKGROUND: We conducted a study to assess the frequency and distribution patterns of selected opportunistic infections (OIs) and opportunistic cancers (OCs) in different geographical areas before and after HAART in Uganda. METHODS: This was a cross-sectional serial review of observation data for ad...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142427/ https://www.ncbi.nlm.nih.gov/pubmed/27927247 http://dx.doi.org/10.1186/s13104-016-2317-7 |
Sumario: | BACKGROUND: We conducted a study to assess the frequency and distribution patterns of selected opportunistic infections (OIs) and opportunistic cancers (OCs) in different geographical areas before and after HAART in Uganda. METHODS: This was a cross-sectional serial review of observation data for adult HIV positive patients (≥15 years) enrolled with the AIDS support organization (TASO) in Uganda covering the period from January 2001 to December 2013. Both AIDS defining OIs/OCs and non-AIDS defining OIs were analyzed. The study period was structured into three time periods: “pre- HAART” (2001–2003), “early-HAART” (2004–2008) and “late-HAART” (2009–2013). Descriptive statistics were used to summarize the data by time period, age, gender and geographical location. Chi squared test used to test the significance of the differences in proportions. RESULTS: A total of 108,619 HIV positive patients were included in the analysis. 64% (64,240) were female with median age of 33 years (IQR 27–40). The most frequent OIs before HAART were oral candida (34.6%) diarrhoeal infection (<1 month) (30.6%), geohelminths (26.5%), Mycobacterium tuberculosis (TB) (17.7%), malaria (15.1%) and bacterial pneumonia (11.2%). In early HAART (2004–2008), the most frequent OIs were geohelminths (32.4%), diarrhoeal infection (25.6%), TB (18.2%) and oral candida (18.1%). In late HAART (2009–2013), the most frequent OIs were geohelminths (23.5%) and diarrhoeal infection (14.3%). By gender, prevalence was consistently higher in women (p < 0.05) before and after HAART for geohelminths, candidiasis, diarrhoeal infection, bacterial pneumonia and genital ulcer disease but consistently higher in men for TB and Kaposi’s sarcoma (p < 0.05). By age, prevalence was consistently higher in older age groups (>30 years) before and after HAART for oral candida and TB (p < 0.05) and higher in young age groups (<30 years) for malaria and genital ulcers (p < 0.05). By geographical location, prevalence was consistently higher in Eastern and Northern Uganda before and after HAART for diarrheal infection and geohelminths (p < 0.0001). CONCLUSIONS: The frequency and pattern of OIs before and after HAART differs by gender, age and geographical location. Prevalence of geohelminths and diarrhea infection(<1 month) remains high especially in Northern and Eastern Uganda even after HAART and should therefore be given special attention in HIV/AIDS care programmes in these settings. |
---|