Cargando…

An endosomal tether undergoes an entropic collapse to bring vesicles together

An early step in intracellular transport is the selective recognition of a vesicle by its appropriate target membrane, a process regulated by Rab GTPases via the recruitment of tethering effectors1–4. Membrane tethering confers higher selectivity and efficiency to membrane fusion than the pairing of...

Descripción completa

Detalles Bibliográficos
Autores principales: Murray, David H., Jahnel, Marcus, Lauer, Janelle, Avellaneda, Mario J., Brouilly, Nicolas, Cezanne, Alice, Morales-Navarrete, Hernán, Perini, Enrico D., Ferguson, Charles, Lupas, Andrei N., Kalaidzidis, Yannis, Parton, Robert G., Grill, Stephan W., Zerial, Marino
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142606/
https://www.ncbi.nlm.nih.gov/pubmed/27556945
http://dx.doi.org/10.1038/nature19326
Descripción
Sumario:An early step in intracellular transport is the selective recognition of a vesicle by its appropriate target membrane, a process regulated by Rab GTPases via the recruitment of tethering effectors1–4. Membrane tethering confers higher selectivity and efficiency to membrane fusion than the pairing of SNAREs alone5,6,7. Here, we addressed the mechanism whereby a tethered vesicle comes closer towards its target membrane for fusion by reconstituting an endosomal asymmetric tethering machinery consisting of the dimeric coiled-coil protein EEA16,7 recruited to phosphatidylinositol 3-phosphate membranes and binding vesicles harboring Rab5. Surprisingly, structural analysis revealed that Rab5:GTP induces an allosteric conformational change in EEA1, from extended to flexible and collapsed. Through dynamic analysis by optical tweezers we confirmed that EEA1 captures a vesicle at a distance corresponding to its extended conformation, and directly measured its flexibility and the forces induced during the tethering reaction. Expression of engineered EEA1 variants defective in the conformational change induced prominent clusters of tethered vesicles in vivo. Our results suggest a new mechanism in which Rab5 induces a change in flexibility of EEA1, generating an entropic collapse force that pulls the captured vesicle toward the target membrane to initiate docking and fusion.